Interested Article - Многочлен Бернштейна

В вычислительной математике многочлены Бернштейна — это алгебраические многочлены , представляющие собой линейную комбинацию базисных многочленов Бернштейна .

Устойчивым алгоритмом вычисления многочленов в форме Бернштейна является алгоритм де Кастельжо .

Многочлены в форме Бернштейна были описаны Сергеем Натановичем Бернштейном в 1912 году и использованы им в конструктивном доказательстве аппроксимационной теоремы Вейерштрасса . С развитием компьютерной графики полиномы Бернштейна на промежутке x ∈ [0, 1] стали играть важную роль при построении кривых Безье .

Определение

( n + 1) базисных многочленов Бернштейна степени n находятся по формуле

где биномиальный коэффициент .

Базисные многочлены Бернштейна степени n образуют базис для линейного пространства многочленов степени n .

Линейная комбинация базисных полиномов Бернштейна

называется многочленом Бернштейна или точнее многочленом в форме Бернштейна степени n . Коэффициенты называются коэффициентами Бернштейна или коэффициентами Безье .

Примеры

Вот некоторые базисные полиномы Бернштейна:

Свойства

Дифференцирование

Леммы о моментах

для любых n и x , так как

для любых n и x

для любых n и x

Аппроксимация непрерывных функций

См. также

Примечания

  1. Бернштейн С. Н. Собрание сочинений. — М. , 1952. — Т. 1. — С. 105-106.
  2. Бернштейн С. Н. Собрание сочинений. — М. , 1954. — Т. 3. — С. 310-348.
Источник —

Same as Многочлен Бернштейна