Interested Article - Теорема Бернштейна о седловом графике

Теорема Бернштейна о седловом графике — классическая теорема о седловых поверхностях . Доказана Сергеем Натановичем Бернштейном .

Формулировка

Предположим график гладкой функции является строго седловой поверхностью. Тогда функция неограничена; то есть не существует константы такой, что для любой .

Замечания

  • Утверждение теоремы неверно без предположения что поверхность является графиком. Пример полной седловой поверхности лежащей между двумя праллельными плоскостями можно найти среди поверхностей вращения.
  • Существуют также седловые графики лежащие в верхнем полупространстве ; таков например график .

Вариации и обобщения

  • Если график гладкой ограниченной функции является нестрого седловым, то график является линейчатой поверхностью с параллельными образующими.

Примечания

  1. Bernstein, S.N. (1915–1917), "Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique", Comm. Soc. Math. Kharkov , 15 : 38—45 German translation in Bernstein, Serge (1927), "Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus", (нем.) , Springer Berlin / Heidelberg, 26 : 551—558, doi : , ISSN Русский перевод в «Успехах математических наук», вып. VIII (1941), 75—81 и в С. Н. Бернштейн, Собрание сочинений. Т. 3. (1960) с. 251—258.
Источник —

Same as Теорема Бернштейна о седловом графике