Interested Article - Собственное движение
- 2020-03-18
- 1
Со́бственное движе́ние — изменения координат звёзд на небесной сфере , вызванные относительным движением звёзд и Солнечной системы . В них не включают периодические изменения, вызванные движением Земли вокруг Солнца (годичный параллакс , аберрация света ), и движение, вызванное прецессией экваториальной системы координат .
Более строгое определение: «Собственным движением звезды в астрономии называют величины, характеризующие её угловое перемещение на небесной сфере в заданной системе координат за единицу времени»
Определения
Если какая-либо звезда наблюдалась дважды в эпоху и эпоху и её видимые экваториальные координаты — прямое восхождение ( α ) и склонение ( δ ) — приведены в систему фундаментального каталога FK5 (эпоха T0), то её собственные движения по указанным координатам определяются как
Они обычно выражаются в угловых секундах в год или в тысячных долях угловой секунды (угловых миллисекундах, mas) в год и могут быть положительными и отрицательными.
Следует отметить, что координатные линии равного склонения, вдоль которых отсчитывается прямое восхождение, вообще говоря, не являются геодезическими ( большими кругами небесной сферы), поэтому скорость изменения координаты α не является компонентой угловой скорости светила, в отличие от скорости изменения координаты δ . Для пересчёта в компоненту угловой скорости величину μ α необходимо домножить на косинус склонения:
Величину μ α* называют редуцированным собственным движением по прямому восхождению; она совпадает с μ α только на небесном экваторе . В каталогах в качестве μ α может быть указано редуцированное или нередуцированное собственное движение по прямому восхождению; так, в каталоге HIPPARCOS приводятся редуцированные собственные движения звёзд (компоненты угловой скорости) .
Полное собственное движение μ (абсолютная величина двумерного вектора скорости звезды на небесной сфере) определяется как
Эта величина всегда неотрицательна. Позиционный угол θ собственного движения звезды отсчитывается от направления на север по часовой стрелке и определяется из соотношений
Определённые таким способом собственные движения звёзд иногда называют меридианными, так как они определяются в результате сравнения двух положений, полученных посредством наблюдений на меридианных кругах . Массовые определения меридианных собственных движений звёзд стали возможными уже в XIX веке в результате создания нескольких десятков меридианных каталогов, приведённых к некоторой одной фундаментальной системе. Наибольшее число (33 342) положений и собственных движений звёзд (в том числе слабых — до 9-й звёздной величины ) в одной системе приведено в известном общем каталоге «General Catalogue» Льюиса Босса ( 1910 год ). Ошибки собственных движений в этом каталоге составляют ± (0,005—0,15)″/год . Положения и движения звёзд несвободны от систематических ошибок. Новые фундаментальные каталоги звёзд FK4 и FK5 сохраняют ошибки собственных движений на уровне ± (0,002—0,005)″/год , однако эти каталоги охватывают лишь небольшое число избранных, в основном ярких звёзд. К 1995 году было известно не менее 50 000 меридианных собственных движений звёзд от самых ярких до 9-й звёздной величины . Ошибки этих собственных движений могут быть от ± 0,002″ до ± 0,010″ в зависимости от продолжительности истории наблюдений. По величине большинство известных собственных движений меньше 0,050″/год, однако встречаются и большие собственные движения. Так, самое высокое значение собственного движения имеет «летящая» звезда Барнарда — 10,358″/год. Вторую и третью строчку в рейтинге самых быстро перемещающихся звёзд на небесной сфере занимают звезда Каптейна (8,670″/год) и звезда Аргеландера (7,059″/год).
Связь между расстоянием и собственным движением звезды определяется из соотношения
Здесь — проекция на небесную сферу пространственной скорости звезды в системе координат, движущейся вместе с Солнцем, D — расстояние до звезды в парсеках ( 1 пк = 206 265 астрономических единиц = 3,26 светового года ). Размерность — км/с, размерность μ — угловая секунда в год.
Способы измерения
В конце XIX века в практику наблюдательной астрономии прочно внедрилась фотография. В связи с этим развились фотографические методы определения собственных движений звёзд.
Фотографические собственные движения звёзд определяются сравнением измеренных положений звёзд на различных пластинках, полученных в разные эпохи. В силу этого фотографические собственные движения неизбежно остаются относительными, то есть определяют движение одних звёзд относительно некоторой группы других звёзд (так называемых опорных звёзд), о движении которых делаются более или менее правдоподобные предположения. Таким образом, чтобы перейти от фотографических собственных движений звёзд к меридианным (имеющим смысл инерциальных или «абсолютных»), необходимо выполнить дополнительное исследование, которое астрономы иногда называют абсолютизацией и которое редко бывает безупречным.
Главное достоинство фотографических собственных движений в их относительно высокой точности и массовости в отношении самых слабых звёзд. Это обстоятельство делает их незаменимым наблюдательным материалом при статистических исследованиях, связанных с определением дисперсий пекулярных (индивидуальных) движений звёзд и распределением движений звёзд, отнесённых к разным типам звёздного населения.
Существенным недостатком фотографических собственных движений звёзд является их несвобода от разного рода систематических ошибок , связанных с фотографическим методом наблюдений. Это так называемые ошибки «уравнения блеска», «уравнения цвета» и некоторые другие, связанные с несовершенством оптики широкоугольных телескопов , применяемых в астрофотографии. Перечисленные ошибки выражаются в систематическом смещении изображений звёзд на пластинке в зависимости от яркости, цвета звёзд и их положения на пластинке. Эти ошибки трудно калибруются, так как они зависят ещё от постоянно изменяющихся условий наблюдений (прозрачности атмосферы, ветра, качества изображений).
Новой эпохой в определении собственного движения звёзд стал полёт спутника Hipparcos ( HI gh P recision PAR arallax CO llecting S atellite), который за 37 месяцев работы провёл миллионы измерений звёзд. В результате работы получилось два звёздных каталога. Каталог HIPPARCOS содержит измеренные с ошибкой порядка одной тысячной угловой секунды координаты, собственные движения и параллаксы для 118 218 звёзд . Такая точность для звёзд достигнута в астрометрии впервые. Во втором каталоге — — приводятся несколько менее точные сведения для 1 058 332 звёзд . Создание этих двух каталогов ознаменовало рождение нового направления — космической астрометрии .
Сейчас во многих странах ведутся работы по созданию новых проектов астрометрических измерений из космоса. В России имеются два таких проекта — ЛОМОНОСОВ и СТРУВЕ, подготовленные соответственно астрономами Государственного астрономического института имени Штернберга в Москве и астрономами Пулковской обсерватории в Санкт-Петербурге .
В 2013 году был запущен европейский аппарат Gaia ( G lobal A strometric I nterferometer for A strophysics). Целью этого проекта является измерение координат, собственных движений и параллаксов для 50 миллионов звёзд с точностью лучше, чем 10 микросекунд дуги.
История открытия
Открытие движений « неподвижных » звёзд принадлежит знаменитому английскому астроному Эдмунду Галлею , обнаружившему в 1718 году , что некоторые яркие звёзды из каталога Гиппарха — Птолемея заметно изменили свои положения среди других звёзд. Это были: Сириус , сместившийся к югу почти на полтора диаметра Луны, Арктур — на два диаметра к югу и Альдебаран , сместившийся на 1/4 диаметра Луны к востоку. Замеченные изменения нельзя было приписать ошибкам каталога Птолемея, не превосходившими, как правило, 6′ (1/5 диаметра Луны) [ источник не указан 2642 дня ] . Открытие Галлея вскоре ( 1728 год ) было подтверждено другим английским астрономом, Джеймсом Брадлеем , который более известен как первооткрыватель годичной аберрации света . В дальнейшем определениями движений звёзд занимались Тобиас Майер ( 1723 — 1762 ), Никола Лакайль ( 1713 — 1762 ) и многие другие астрономы вплоть до Фридриха Бесселя ( 1784 — 1846 ), положившие начало современной фундаментальной системе положений звёзд.
Литература
- Theo Koupelis. / Theo Koupelis, Karl F. Kuhn. — Jones & Bartlett Publishers, 2007. — P. . — ISBN 978-0-7637-4387-1 .
- D. Scott Birney. / D. Scott Birney, Guillermo Gonzalez, David Oesper. — 2007. — P. 75. — ISBN 978-0-521-85370-5 .
Примечания
- Matra Marconi Space, Alenia Spazio. 25. ESA (15 сентября 2003). Дата обращения: 8 апреля 2015. 3 марта 2016 года.
Ссылки
- В. В. Витязев .
- А. А. Киселёв .
- , интерактивные схемы созвездий
-
Y Sofu; V Rubin (2001). "Rotation Curves of Spiral Galaxies".
Annual Review of Astronomy and Astrophysics
.
39
: 137—174.
arXiv
:
.
Bibcode
:
.
doi
:
.
{{ cite journal }}
: Неизвестный параметр|last-author-amp=
игнорируется (|name-list-style=
предлагается) ( справка )
- 2020-03-18
- 1