Interested Article - Хромериды

Хромери́ды ( лат. Chromerida ) — выделявшийся в 2008—2019 годах тип родственных споровикам фототрофных протистов из группы альвеолят . В группе описаны 2 вида: и . Оба обнаружены среди симбиофауны кораллов Австралии , однако данные метагеномики свидетельствуют о вероятном широком распространении свободноживущих видов хромерид .

Жизненный цикл

Жизненный цикл обоих видов описан по наблюдению за культурой клеток . Одиночные коккоидные клетки делятся бинарным делением . Во время деления дочерние клетки ( ) выделяют общую оболочку, образуя автоспорангий , содержащий до 4 автоспор у Chromera velia или до нескольких десятков у Vitrella brassicaformis . Автоспоры C. velia могут выходить из спорангия и повторять жизненный цикл или же образовывать двухжгутиковые зооспоры . У V. brassicaformis помимо автоспорангиев могут образовываться зооспорангии , в которых образуются десятки зооспор, минуя стадию автоспоры. Функция зооспор пока не известна, показано, что после выхода из спорангия они могут инцистироваться и давать начало новому витку цикла. Половой процесс у хромерид не обнаружен .

Особенности строения клетки

Автоспоры и вегетативные коккоидные клетки неподвижны, имеют диаметр от 3 до 7 микрометров и покрыты типичной для альвеолят пелликулой . Каждая клетка несет крупную конусообразную пластиду , окруженную 4 мембранами , в которой осуществляется фотосинтез . Данная органелла считается гомологичной утратившему фотосинтетическую функцию у родственной хромеридам группы споровиков . Важной отличительной особенностью пластид у хромерид является отсутствие хлорофилла c .

Подвижные зооспоры несут два жгутика , располагающихся субтерминально, и по внешнему строению напоминают клетки кольподеллид . У зооспор Chromera velia обнаружены структуры, внешне напоминающие органеллы апикального комплекса споровиков: состоящий из микротрубочек псевдоконоид и элетронноплотные гранулы — микронемы . У этого вида также найдена уникальная органелла с неизвестной функцией — хромеросома , напоминающая трихоцисты динофлагеллят .

Метаболизм

В отличие от своих ближайших родственников — апикомплекс , хромериды обладают всеми основными метаболическими путями , связанными с фотосинтезом , ассимиляцией нитратов и сульфатов , метаболизмом углеводов . Несмотря на наличие окислительного фосфорилирования , митохондрии хромерид и их геном значительно редуцированы. У Chromera velia в митохондриальном геноме присутствуют только два белок-кодирующих гена : и , кодирующие субъединицы цитохром c -оксидазы . У данного вида также отсутствуют комплекс I и комплекс III дыхательной цепи переноса электронов . Перенос электронов на цитохром c предположительно осуществляется с помощью , что позволяет электрон-транспортной цепи функционировать без комплекса III .

Уникальной особенностью хромерид является путь синтеза тетрапирролов , в частности, хлорофилла или гемов . У первично гетеротрофных эукариот тетрапирролы синтезируются из глицина в митохондриях и цитоплазме (C4 путь). У фототрофов данный процесс осуществляется в пластидах , а в качестве первичного субстрата для синтеза используется глутамат (С5 путь). У хромерид, несмотря на фототрофный образ жизни, синтез идет по C4 пути, при этом ферменты , вовлеченные в данный процесс, локализованы как в митохондриях, так и в пластидах .

Систематическое положение и статус

Тип Chromerida был образован вместе с таксономическим описанием Chromera velia в 2008 году . По данным молекулярной филогенетики хромериды вместе с кольподеллидами формируют внутри группы альвеолят сестринский споровикам таксон . Если первоначально взаимоотношения между первыми двумя группами не были известны, то в 2019 году, несмотря на различия в морфологии и образе жизни, окончательно доказано расположение обоих видов хромерид внутри таксона Сolpodellida :

Систематика по данным Oborník и др., 2013 : Систематика по данным Mathur и др., 2019 :
Хромериды выделены зелёным фоном

Как видно из кладограммы 2019 года, хромериды образуют полифилетическую группу внутри кольподеллид , поэтому их больше не используют как валидное название таксона: их либо синонимизируют с кольподеллидами , либо объявляют группой таксонов, не придавая последней ранга .

Прикладное значение

Хромериды рассматриваются в качестве удобного модельного объекта для тестирования и поиска новых лекарственных средств против малярии и других заболеваний, вызываемых представителями апикомплекс , так как их пластиды гомологичны последних, являющегося мишенью для многих антималярийных препаратов. При этом хромериды легко культивируются и не требуют особых мер безопасности при работе в лаборатории .

Примечания

  1. Чернышев А. В. Хромериды — новый тип простейших // Природа. — 2008. — № 9 . — С. 82—83 .
  2. Moore R. B., Oborník M., Janouskovec J., Chrudimský T., Vancová M., Green D. H., Wright S. W., Davies N. W., Bolch C. J., Heimann K., Slapeta J., Hoegh-Guldberg O., Logsdon J. M., Carter D. A. A photosynthetic alveolate closely related to apicomplexan parasites (англ.) // Nature. — 2008. — Vol. 7181 , no. 451 . — P. 959—963. — doi : .
  3. Oborník M., Lukes J. Cell Biology of Chromerids: Autotrophic Relatives to Apicomplexan Parasites // Int Rev Cell Mol Biol. — 2013. — Vol. 306. — P. 333—369. — doi : .
  4. Oborník M., Vancová M., Laia D., Janouškovec J., Keeling P. J., Lukeš J. Morphology and Ultrastructure of Multiple Life Cycle Stages of the Photosynthetic Relative of Apicomplexa, Chromera velia // Protist. — 2011. — Vol. 162. — P. 115—130. — doi : .
  5. Woo Y. H., Ansari H., Otto T. D., Klinger C. M., Kolisko M., Michálek J. et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites (англ.) // eLIFE. — 2015. — Vol. 4. — P. e06974. — doi : .
  6. Flegontov P., Michálek J., Janouškovec J., Lai D. H., Jirků M., Hajdušková E., Tomčala A., Otto T. D., Keeling P. J., Pain A., Oborník M., Lukeš J. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites // Mol Biol Evol. — 2015. — Vol. 32, № 5 . — P. 1115—1131. — doi : .
  7. Mathur V. , Kolísko M. , Hehenberger E. , Irwin N. A. T. , Leander B. S. , Kristmundsson A. , Freeman M. A. , Keeling P. J. (англ.) // Current Biology. — 2019. — September ( vol. 29 , no. 17 ). — P. 2936—2941.e5 . — ISSN . — doi : .
  8. (англ.) на сайте Национального центра биотехнологической информации (NCBI). (Дата обращения: 29 июня 2020) .
  9. (англ.) информация на сайте « Энциклопедия жизни » (EOL). (Дата обращения: 29 июня 2020) .
  10. . The university of Sydney. Дата обращения: 13 ноября 2015. 17 ноября 2015 года.


Источник —

Same as Хромериды