Interested Article - Весовая матрица

В математике , весовая матрица порядка с весом — это -матрица, такая что , где транспонирование матрицы , а — единичная матрица порядка . Весовую матрицу также называют весовой схемой .

Для удобства весовую матрицу порядка и веса часто обозначают .

эквивалентна конференс-матрице , а матрице Адамара .

Свойства

Некоторые свойства следуют непосредственно из определения:

  • Строки весовой матрицы попарно ортогональны. Аналогично для столбцов.
  • Каждая строка и каждый столбец содержит в точности ненулевых элементов.
  • , так как из определения следует (предполагается, что вес не равен 0).
  • , где определитель матрицы .

Две весовые матрицы считаются эквивалентными, если одна может быть получена из другой, посредством ряда перестановок и умножений строк и столбцов исходной матрицы на минус единицу. Весовые матрицы полностью классифицированы для случаев, когда , а также всех случаев, когда . . За исключением этого, очень мало известно о классификации циркулянтных весовых матриц.

Примеры

Отметим, что при отображении весовых матрицы используется символ для −1.

Приведём два примера: является весовой матрицей (матрицей Адамара), а весовой матрицей.

Открытые вопросы

Существует множество открытых вопросов о весовых матрицах. Главным из них является их существование: для каких чисел n и w существует W ( n , w )? Многое в этом вопросе остаётся неизвестным. В равной степени важным, но часто неисследованным вопросом является их подсчёт: для заданных n и w , сколько существует матриц W ( n , w )? Более глубоко, можно задаться вопросом классификации с точки зрения структуры, но на сегодняшний день это далеко выходит за рамки наших возможностей, даже для матриц Адамара или конференс-матриц.

Ссылки

  • , Alexander M. Mood, Ann. Math. Statist. Volume 17, Number 4 (1946), 432-446.

Примечания

  1. M. Harada, A. Munemasa, On the classification of weighing matrices and self-orthogonal codes, 2011, от 21 января 2022 на Wayback Machine .
Источник —

Same as Весовая матрица