Катушка (тара)
- 1 year ago
- 0
- 0
Спиральная катушка — структурный мотив в белках, в котором 2-7 альфа-спиралей свернуты вместе, как нити веревки. ( Димеры и — самые распространенные типы.) Многие белки типа спиральной катушки участвуют в важных биологических функциях, таких как регуляция экспрессии генов — например, факторы транскрипции . Яркими примерами являются онкопротеины и , а также мышечный белок тропомиозин .
Возможность формирования спиральных катушек для α- кератина изначально была несколько спорной. Линус Полинг и Фрэнсис Крик независимо друг от друга пришли к выводу, что это было возможно примерно в одно и то же время. Летом 1952 года Полинг посетил лабораторию в Англии, где работал Крик. Полинг и Крик встречались и говорили на разные темы; в какой-то момент Крик спросил, рассматривал ли Полинг «спиральные катушки» (Крик придумал этот термин), на что Полинг ответил, что так и есть. По возвращении в Соединенные Штаты Полинг возобновил исследования по этой теме. Он пришел к выводу, что спиральные катушки существуют, и в октябре отправил длинную рукопись в журнал Nature . Сын Полинга Питер Полинг работал в той же лаборатории, что и Крик, и рассказал ему об этом отчете. Крик считал, что Полинг украл его идею, и отправил более короткую заметку в Nature через несколько дней после получения рукописи Полинга. В конце концов, после некоторых разногласий и частых переписок, лаборатория Крика заявила, что эта идея была независимо достигнута обоими исследователями и что никакого интеллектуального воровства не произошло . В своей заметке (которая была опубликована первой из-за её меньшей длины) Крик предложил спиральную катушку, а также математические методы определения их структуры . Примечательно, что это произошло вскоре после того, как в 1951 году Линус Полинг и его коллеги предложили структуру альфа-спирали . Эти исследования были опубликованы при отсутствии сведений о последовательности кератина. Первые последовательности кератина были определены Ханукоглу и Фуксом в 1982 г.
На основе анализа предсказания последовательности и вторичной структуры идентифицированы домены спиральных кератинов . Эти модели были подтверждены структурным анализом спиральных доменов кератинов .
Спиральные катушки обычно содержат повторяющийся узор hxxhcxc из гидрофобных ( h ) и заряженных ( c ) аминокислотных остатков, называемый . Положения в гептадном повторе обычно обозначаются abcdefg , где a и d — гидрофобные положения, часто занятые изолейцином , лейцином или валином . Сворачивание последовательности с этим повторяющимся мотивом во вторичную альфа-спиральную структуру приводит к тому, что гидрофобные остатки будут представлены в виде «полосы», которая мягко наматывается вокруг спирали левозакрученным образом, образуя амфипатическую структуру. Наиболее благоприятный способ размещения двух таких спиралей в водонаполненной среде цитоплазмы — это наматывание гидрофобных цепей друг на друга, зажатых между гидрофильными аминокислотами. Таким образом, именно захоронение гидрофобных поверхностей обеспечивает термодинамическую движущую силу для олигомеризации. Упаковка на границе раздела спираль-спираль исключительно плотная, с почти полным ван-дер-ваальсовым контактом между боковыми цепями остатков a и d. Эта плотная упаковка была первоначально предсказана Фрэнсисом Криком в 1952 году и называется «набивкой ручек в отверстия» .
α-спирали могут быть параллельными или антипараллельными и обычно имеют левозакрученную суперспираль (рис. 1). Несколько правозакрученных спиральных катушек также наблюдались в природе и в разработанных белках .
Проникновение вируса в CD4-положительные клетки начинается, когда три субъединицы гликопротеина 120 ( ) связываются с рецептором CD4 и корецептором. Гликопротеин gp120 тесно связан с тримером gp41 посредством ван-дер-ваальсовых взаимодействий. При связывании gp120 с рецептором CD4 и корецептором ряд конформационных изменений в структуре приводит к диссоциации gp120 и экспонированию и в то же время к закреплению N-концевой слитой пептидной последовательности gp41 в клетка-хозяин. Подпружиненный механизм отвечает за то, чтобы мембраны вируса и клетки находились достаточно близко друг к другу, чтобы они могли слиться. Источник подпружиненного механизма лежит в экспонированном , который содержит два последовательных гептадных повтора (HR1 и HR2), следующих за гибридным пептидом на N-конце белка. HR1 образует параллельную тримерную спиральную катушку, на которую наматывается область HR2, образуя структуру тримеров шпилек (или пучка из шести спиралей), тем самым облегчая слияние мембран за счет сближения мембран друг с другом. Затем вирус проникает в клетку и начинает репликацию. В последнее время ингибиторы получают из HR2, таких как Фузеон (DP178, Т-20) связываются с области HR1 gp41 на были разработаны. Однако пептиды, полученные из HR1, обладают небольшой эффективностью ингибирования вирусов из-за склонности этих пептидов к агрегации в растворе. Были разработаны химеры этих производных HR1 пептидов с лейциновыми застежками GCN4, которые, как было показано, более активны, чем Фузеон , но они ещё не вошли в клиническую практику.
Из-за их специфического взаимодействия спиральные катушки могут использоваться в качестве «меток» для стабилизации или обеспечения определённого состояния олигомеризации . Было обнаружено, что взаимодействие спиральной катушки управляет олигомеризацией субъединиц и .
Общая проблема принятия решения о свернутой структуре белка при заданной аминокислотной последовательности (так называемая проблема укладки белка ) не решена. Однако спиральная катушка представляет собой один из относительно небольшого числа мотивов складывания, для которых отношения между последовательностью и конечной складчатой структурой сравнительно хорошо поняты . Harbury et al. выполнили знаковое исследование с использованием архетипической спиральной катушки, GCN4, в которой были установлены правила, которые регулируют то, как пептидная последовательность влияет на олигомерное состояние (то есть количество альфа-спиралей в окончательной сборке) . Спиральная катушка GCN4 представляет собой 31-аминокислотную (что соответствует чуть более, чем четырём гептадам ) параллельную, димерную (то есть состоящую из двух альфа-спиралей ) спиральную катушку и имеет повторяющийся изолейцин (или I в однобуквенном коде ) и лейцин (L) в положениях a и d , соответственно, и образует димерную спиральную катушку. Когда аминокислоты в положениях a и d были заменены с I на a и L на d на I на a и I на d , образовалась тримерная (три альфа-спирали ) спиральная катушка. Кроме того, переключение положений L на a и с I на d привело к образованию тетрамерной (четыре альфа-спирали ) спиральной катушки. Они представляют собой набор правил для определения олигомерных состояний спиральной катушки и позволяют ученым эффективно исследовать поведение олигомеризации. Другим аспектом сборки спиральной катушки, которая относительно хорошо изучена, по крайней мере, в случае димерных спиральных катушек, является то, что размещение полярного остатка (в частности, аспарагин , N) в противоположных положениях инициирует параллельную сборку спиральной катушки. Этот эффект обусловлен самокомплементарной водородной связью между этими остатками, которая не была бы удовлетворена, если бы N был спарен, например, с L на противоположной спирали .
Недавно Пикок, Пикрамену и его коллеги продемонстрировали, что спиральные катушки могут быть собраны самостоятельно, используя ионы лантаноида (III) в качестве матрицы, таким образом создавая новые агенты визуализации .