Interested Article - Коядро

В теории категорий коядро — это понятие, двойственное к ядру — ядро является подобъектом прообраза, а коядро — факторобъектом области прибытия. Интуитивно, при поиске решения уравнения коядро определяет число ограничений, которым должен удовлетворять y , чтобы данное уравнение имело решение.

Определение

Пусть C — категория с нулевыми морфизмами . Тогда коядро морфизма f : X Y — это коуравнитель его и нулевого морфизма 0 : X Y . Более явно, выполняется следующее универсальное свойство :

Коядро f : X Y — это морфизм q : Y Q , такой что:

  • q o f — нулевой морфизм из X в Q ;
  • Для любого морфизма , такого что — нулевой существует единственный морфизм , такой что следующая диаграмма коммутативна:

Как и другие универсальные конструкции, коядро существует не всегда, но если существует, то определено с точностью до изоморфизма.

Как и любые коуравнители, коядро — всегда эпиморфизм . Обратно, эпиморфизм называется нормальным (иногда — конормальным), если он является коядром некоторого морфизма. Категория называется конормальной , если любой эпиморфизм в ней нормален.

Специальные случаи

В абелевой категории образ и кообраз морфизма задаются как

.

В частности, любой эпиморфизм является своим собственным коядром.

Литература

  • С. Маклейн Категории для работающего математика, — М. : ФИЗМАТЛИТ, 2004. — 352 с. — ISBN 5-9221-0400-4 .
  • Paolo Aluffi Algebra: Chapter 0 (Graduate Studies in Mathematics). — 2009, ISBN 0-8218-4781-3 .
Источник —

Same as Коядро