Interested Article - Теорема Рауса — Гурвица

Теоре́ма Ра́уса — Гу́рвица предоставляет возможность определить, является ли данный многочлен устойчивым по Гурвицу . Была доказана в 1895 г. А. Гурвицем и названа в честь Э. Дж. Рауса (предложившего в 1876 г. другой — но эквивалентный критерию Гурвица — критерий устойчивости многочлена) и А. Гурвица .

Условные обозначения

Пусть — многочлен (с комплексными коэффициентами) степени . При этом среди его корней нет двух корней на одной и той же мнимой линии (т. e. на линии где — мнимая единица и вещественное число ). Давайте обозначим (многочлен степени ) и (ненулевой многочлен степени строго меньшей, чем ) через , относительно вещественной и мнимой части мнимой линии.

Введём следующие обозначения:

  • — число корней в левой полуплоскости (взятых с учётом кратностей);
  • — число корней в правой полуплоскости (взятых с учётом кратностей);
  • — изменение аргумента , когда пробегает от до ;
  • — число изменений обобщённой цепочки Штурма , полученной из и с помощью алгоритма Евклида ;

Пусть — над полем комплексных чисел (т. е. он не имеет комплексных коэффициентов и все его корни лежат в левой полуплоскости). Разложим в сумму:

.

Обозначим коэффициенты как , а — как . Внимание! Они пронумерованы «с конца», то есть свободным коэффициентом многочлена является .

Формулировка

В обозначениях, введённых выше, теорема Рауса — Гурвица формулируется следующим образом:

Из первого равенства, например, мы можем заключить, что когда изменение аргумента положительно, тогда имеет больше корней слева от мнимой оси, чем справа. Равенство может рассматриваться как комплексный аналог теоремы Штурма . Однако есть отличие: в теореме Штурма левая часть , а из правой части есть число изменений в цепочке Штурма (в то время как в данном случае относится к обобщённой цепочке Штурма).

Критерий устойчивости Гурвица

Определим матрицу Гурвица как выстроенные «лесенкой» нечётные и чётные коэффициенты:

в зависимости от степени многочлена, в последней строке будут чётные или нечётные коэффициенты. Все главные миноры этой матрицы положительны, если — многочлен Гурвица, и наоборот.

Критерий устойчивости Рауса

, начинающаяся многочленами и , определяет последовательность ведущих коэффициентов многочленов цепочки. Все элементы этой последовательности имеют строго одинаковый знак , если — многочлен Гурвица, и наоборот.

  • Существует более общая версия критерия Рауса: количество корней в правой полуплоскости равно количеству перемен знака в цепочке.
  • Обратите также внимание, что в записи число — индекс переменной, а не показатель степени.

Эквивалентность

Критерии Гурвица и Рауса эквивалентны. Они оба характеризуют устойчивые по Гурвицу многочлены.

Доказательство

Применив метод Гаусса к матрице , мы получим диагональную матрицу . Однако теперь критерий Гурвица соответствует требованию «все элементы трансформированной матрицы имеют одинаковый знак». Если же подробно рассмотреть, как метод Гаусса трансформирует матрицу , мы получим условия генерации цепочки Штурма. Убедившись, что коэффициенты соответствуют коэффициентам , мы и получим критерий Рауса.

Критерий Рауса — Гурвица

Из этой теоремы легко следует критерий устойчивости, так как устойчив по Гурвицу тогда и только тогда , когда . Таким образом получаем условия на коэффициенты , накладывая дополнительные условия и .

Наравне с теоремой Стилтьеса , теорема Рауса — Гурвица даёт способы характеризации устойчивых многочленов. Устойчивость — свойство, важное не только в теории функций комплексных переменных. Например, в теории управления является стабильным тогда и только тогда, когда его z-преобразование устойчиво. Она является таковой, если многочлен Лорана в знаменателе не имеет корней вне единичной окружности . Решение этой проблемы можно, однако, свести к проблеме устойчивости «обычного» многочлена в изложенной в данной статье формулировке.

Кроме того, соответствие критериев Рауса и Гурвица даёт больше информации о структуре простого критерия Рауса, которая видна при изучении более сложного критерия Гурвица.

См. также

Примечания

  1. , с. 15—16.

Литература

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Теорема Рауса — Гурвица