Биполярный транзистор
- 1 year ago
- 0
- 0
Транзи́стор с пла́вающим затво́ром — разновидность полевого МОП-транзистора , используемая в различных устройствах энергонезависимой памяти : флэш-памяти , EEPROM .
ЛИЗМОП ( англ. FAMOS — Floating gate Avalanche injection Metal Oxide Semiconductor ) — полевой МОП-транзистор с лавинной инжекцией заряда, базовый элемент одного из вариантов энергонезависимых постоянных запоминающих устройств . Использовался в энергонезависимой памяти типа EPROM .
Конструкция транзистора была предложена Фроман-Бенчковским в 1971 году и отличается от обычного полевого транзистора наличием «плавающего затвора», то есть проводящей области над каналом, которая изолирована от других частей структуры и на которой можно сохранять электрический заряд . Изменение величины заряда на плавающем затворе приводит к сдвигу вольт-амперной характеристики транзистора, что и используется для кодирования логических состояний 1 и 0. Для переноса электронов из подложки на плавающий затвор используется явление лавинного пробоя перехода исток (сток) — подложка («лавинная инжекция»), а для удаления электронов из плавающего затвора структура облучается ультрафиолетовым светом (УФ) через специальное окно в корпусе микросхемы, прозрачное для УФ и возбуждённые фотонами электроны из плавающего затвора возвращаются в подложку. Некоторые микросхемы имели ячейки памяти на основе ЛИЗМОП, но исполнялись в корпусах без окна, и поставлялись как PROM . Чтобы решить эту проблему, некоторые умельцы стали облучать микросхемы такой ЛИЗМОП-памяти в корпусе без окна рентгеновским излучением , однако, это нередко приводило к необратимым повреждениям микросхемы памяти. Существует два варианта конструкции транзистора, различающиеся наличием или отсутствием обычного управляющего затвора (варианты «с плавающим затвором» и «с двойным затвором»).
Недостатком ЛИЗМОП-транзисторов является ограниченное число перезаписей информации (порядка 100) и невозможность изменения информации в отдельно взятой ячейке памяти без стирания информации во всей запоминающей матрице микросхемы. Поэтому в 1980-е годы ЛИЗМОП-структуры были вытеснены другими конструкциями энергонезависимой памяти, позволяющими стирать информацию чисто электрическим способом.
В таких транзисторах изменение электрического заряда внутреннего, изолированного слоями диэлектрика затвора производится чисто электрическим способом без применения ультрафиолетового излучения , но принцип действия сохраняется. Изменение заряда плавающего затвора происходит за счет туннелирования электронов и обратимого лавинного пробоя тончайших (порядка нескольких нм ) слоёв диэлектрика, обусловленных высокой напряжённостью электрического поля в диэлектрике. При изменении электрического заряда на плавающем затворе изменяется вид вольт-амперной характеристики структуры, в частности, изменяется напряжение отсечки при управлении изменением напряжения на управляющем затворе, что позволяет в этой структуре хранить 1 бит информации. Так как заряд плавающего, изолированного от всех электрических цепей затвора сохраняется (при не очень сильных электрических полях в слоях диэлектрика), микросхемы , построенные на таких структурах, сохраняют информацию при отключённом напряжении питания .
Широко применяется в типах флеш-памяти , допускающих (по данным на 2010 год) по крайней мере 100 тысяч циклов перезаписи для SLC (однобитных ячеек) и 10 тысяч — для MLC (хранение 2 бит в ячейке в виде одного из четырёх уровней) . Такая память изготавливается по техпроцессам вплоть до 19—16 нм . Приблизительно в 2011—2012 годах всеми производителями флеш-памяти были внедрены воздушные промежутки между управляющими линиями, позволившие продолжить масштабирование далее 24—26 нм . Из-за проблем с дальнейшим масштабированием с 2014—2015 года некоторые производители (Samsung) начали массовый выпуск 24- и 32-слойной 3D NAND , в которой для хранения информации используются не транзисторы с плавающим затвором, а ячейки на базе технологии CTF .
All the NAND manufacturers adopted an air-gap process to achieve high performance and reliability. Toshiba implemented an air-gap process on its 19nm NAND device, while Samsung adopted it on 21nm. IMFT has used a more mature air-gap process on both the wordline and bitline structure since its 25nm NAND technology.
This had already become a problem at the 25nm node requiring the deployment of airgap between the cells to reduce interference
{{
cite news
}}
: Википедия:Обслуживание CS1 (множественные имена: authors list) (
ссылка
)