Бифуркация
- 1 year ago
- 0
- 0
В теории динамических систем , бифуркация Андронова — Хопфа — локальная бифуркация векторного поля на плоскости, в ходе которой особая точка-фокус теряет устойчивость при переходе пары её комплексно-сопряжённых собственных значений через мнимую ось. При этом либо из особой точки рождается небольшой устойчивый предельный цикл ( мягкая потеря устойчивости ), либо, наоборот, небольшой неустойчивый предельный цикл в момент бифуркации схлопывается в эту точку, и её после бифуркации имеет отделённый от нуля размер ( жёсткая потеря устойчивости ).
Для того, чтобы эта бифуркация имела место, достаточно в дополнение к переходу собственных значений через мнимую ось наложить на систему некоторые условия типичности.
Бифуркация Андронова — Хопфа и седлоузловая бифуркация — единственные локальные бифуркации векторных полей на плоскости, возникающие в типичных однопараметрических семействах.
Бифуркацией Андронова — Хопфа называют
где
Если отрицателен при положительном , то бифуркация суперкритическая, если положителен при отрицательном — субкритическая.
Термины «мягкая» и «жёсткая» связаны с описанием поведения системы с точки зрения «внешнего» наблюдателя, при медленной (в сравнении с динамикой системы) эволюции параметра системы и зашумлении системы малыми случайными возмущениями. В случае мягкой потери устойчивости решение перейдёт из положения равновесия (ставшего неустойчивым) в предельный цикл — наблюдатель будет видеть периодическое «дрожание» состояния системы недалеко от положения равновесия, которое будет усиливаться с ростом параметра. Однако, в масштабе времени «движения параметра», «отклонения» решения нарастают непрерывно. Напротив того, при жёсткой потере устойчивости решение «резко» срывается и уходит за границу бассейна отталкивания исчезнувшего предельного цикла: с точки зрения наблюдателя, живущего в масштабе времени, в котором изменяется параметр, решение скачком поменяло режим.