Interested Article - Моноидальная категория

Моноидальная категория (или тензорная категория ) — категория C , снабженная бифунктором

⊗ : C × C C ,

который ассоциативен с точностью до естественного изоморфизма , а также объектом I , который является единицей для также с точностью до естественного изоморфизма. Также на естественные изоморфизмы накладываются некоторые дополнительные условия. В моноидальной категории можно дать определение моноида , обобщающее свойства моноида из общей алгебры. На самом деле, обычные моноиды — это моноиды в категории множеств с прямым произведением в качестве моноидального произведения.

Обычное тензорное произведение делает векторные пространства , абелевы группы и модули моноидальными категориями, произвольные моноидальные категории можно рассматривать как обобщение этих примеров.

Определение

Формально, моноидальная категория — это категория , снабжённая:

  • бифунктором , называемым как тензорное произведение или моноидальное произведение ,
  • объектом , называемым единицей или тождественным объектом ,
  • тремя естественными изоморфизмами , выражающими тот факт, что операция тензорного произведения
    • ассоциативна: существует естественный изоморфизм (так называемый ассоциатор ) , ,
    • является единицей: существуют два естественных изоморфизма и , и .

На эти естественные изоморфизмы наложены дополнительные условия:

  • для всех , , , в следующая пятиугольная диаграмма коммутативна :

  • для всех и треугольная диаграмма коммутативна:

Из этих условий следует, что любая диаграмма этого типа (то есть диаграмма, стрелки которой составлены из , , , единицы и тензорного произведения) коммутативна: это составляет предмет теоремы о когерентности Маклейна . Например, несколькими применениями ассоциатора легко показать, что и изоморфны. Ассоциаторы можно применять в разном порядке (например, на диаграмме приведено два способа для N =4), но из теоремы о когерентности следует, что разные последовательности применений задают одно и то же отображение.

Строго моноидальная категория — это категория, для которой естественные изоморфизмы α , λ , ρ — тождественные.

Примеры

  • Любая категория с конечными произведениями моноидальна, с категорным произведением в качестве моноидального произведения и терминальным объектом в качестве единицы. Такую категорию иногда называют декартово моноидальной категорией . Например:
    • категория множеств с декартовым произведением и одноэлементным множеством в качестве единицы.
  • Любая категория с конечными копроизведениями также является моноидальной с копроизведением и начальным объектом в качестве единицы.
  • R -Mod , категория модулей над коммутативным кольцом R — моноидальна с тензорным произведением R и кольцом R (понимаемым как модуль над самим собой) в качестве единицы.
  • Категория эндофункторов (функторов в себя) в категории C — строгая моноидальная категория с композицией функторов в качестве операции произведения.

См. также

Примечания

  • Kelly, G. Max (1964). «On MacLane’s Conditions for Coherence of Natural Associativities, Commutativities, etc.» — Journal of Algebra 1 , 397—402
  • Kelly, G. Max. (англ.) . — Cambridge University Press , 1982. — (London Mathematical Society Lecture Note Series No. 64).
  • Mac Lane, Saunders (1963). «Natural Associativity and Commutativity». — Rice University Studies 49 , 28-46.
  • Маклейн С. Глава 7. Моноиды // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова . — М. : Физматлит, 2004. — С. 188—221. — 352 с. — ISBN 5-9221-0400-4 .
Источник —

Same as Моноидальная категория