Interested Article - Ортогональные функции

Две, в общем случае, комплекснозначные функции и , принадлежащие пространству Лебега , где измеримое множество , называются ортогональными , если

Для векторных функций вводится скалярное произведение функций под интегралом, а также интегрирование по отрезку заменяется на интегрирование по области соответствующей размерности. Полезным обобщением понятия ортогональности является ортогональность с определённым весом. Ортогональны с весом функции и , если

где — скалярное произведение векторов и — значений векторнозначных функций и в точке , — точка области , а — элемент её объёма ( меры ). Эта формула записана наиболее общим способом по сравнению со всеми выше. В случае вещественных скалярных , скалярное произведение следует заменить на обычное; в случае комплексных скалярных , : .


Требование принадлежности функций пространству связано с тем, что при пространства не образуют гильбертова пространства , а потому на них невозможно ввести скалярное произведение, а вместе с ним и ортогональность.

Пример

  1. и являются ортогональными функциями на интервале
  2. ) и , где — целое, ортогональны на интервале
  3. и ортогональны на интервале

См. также

Источник —

Same as Ортогональные функции