Interested Article - Граф Паппа

В теории графов графом Паппа называется двудольный 3- регулярный неориентированный граф с 18 вершинами и 27 рёбрами, являющийся графом Леви конфигурации Паппа . Он назван в честь Паппа Александрийского , математика Древней Греции , который верил, что доказал «теорему о шестиугольнике», в которой описывал конфигурацию Паппа. Все кубические дистанционно-регулярные графы известны. Граф Паппа — один из тринадцати таких графов .

Число прямолинейных скрещиваний графа Паппа равно 5, и этот граф является наименьшим кубическим графом с таким числом скрещиваний (последовательность в OEIS ). Граф имеет обхват 6, диаметр 4, радиус 4, хроматическое число 2, хроматический индекс 3, а также является и вершинно 3-связным , и рёберно 3-связным .

Хроматический многочлен графа Паппа равен .

Имя «граф Паппа» используется также для близкого графа с девятью вершинами , по вершине для каждой точки конфигурации Паппа с рёбрами для каждой пары точек, находящихся на одной линии. Этот граф 6-регулярен и является дополнением объединения трёх не связанных друг с другом треугольных графов . Первый граф Паппа можно вложить в тор, получая при этом с девятью шестиугольными гранями. Второй граф образует при таком вложении правильную карту с 18 треугольными гранями.

Алгебраические свойства

Группа автоморфизмов графа Паппа — это группа с порядком 216. Она действует транзитивно на вершины и рёбра графа. Таким образом, граф Паппа является симметричным . У него есть автоморфизмы, переводящие любую вершину в любую другую и любое ребро в любое другое ребро. В списке Фостера граф Папа обозначен как F018A и является единственным кубическим симметричным графом с 18 вершинами .

Характеристический многочлен графа Паппа равен . Это единственный граф с таким характеристическим полиномом, так что в данном случае граф определяется своим спектром.

Галерея

Примечания

  1. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  2. Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance — Regular Graphs. New York: Springer—Verlag, 1989.
  3. I. N. Kagno. Desargues' and Pappus' graphs and their groups. — American Journal of Mathematics. — The Johns Hopkins University Press, 1947. — Т. 69. — С. 859—863. — doi : .
  4. Royle, G. 20 июля 2008 года.
  5. and Dobcsányi, P. «Trivalent Symmetric Graphs Up to 768 Vertices.» J. Combin. Math. Combin. Comput. 40, 41—63, 2002.
Источник —

Same as Граф Паппа