Трилинейная интерполяция
— метод многомерной интерполяции в трёхмерном евклидовом пространстве. Линейно аппроксимирует значение функции
в точке
, используя известные значения в окружающих точках.
Трилинейная интерполяция часто используется в численном анализе и машинной графике
[
источник не указан 4082 дня
]
.
Сравнение с линейной и билинейной интерполяцией
Трилинейная интерполяция является расширением
линейной интерполяции
, действующей в пространстве с
размерностью
, и
билинейной интерполяции
, действующей в пространстве с размерностью
, на пространство размерности
. Для того чтобы интерполировать значения функции в точке
, необходимо знать значения
в 8 смежных точках, окружающих
.
Интерполяция действительной функции
Допустим, требуется интерполировать значение функции
в точке
. Пусть даны значения функции
в окружающих точках
, где
,
,
, причем
,
,
. Последовательно проводя линейную интерполяцию для каждого измерения, можно получить следующую формулу:
-
В частности, в единичном кубе (
):
-