Interested Article - Уравнение четвёртой степени

График многочлена 4-й степени с четырьмя корнями и тремя критическими точками

Уравне́ние четвёртой сте́пени — в математике алгебраическое уравнение вида:

Четвёртая степень для алгебраических уравнений является наивысшей , при которой существует аналитическое решение в радикалах в общем виде (то есть при любых значениях коэффициентов).

Так как функция является многочленом чётной степени, она имеет один и тот же предел при стремлении к плюс и к минус бесконечности. Если , то функция возрастает до плюс бесконечности с обеих сторон, а значит, имеет глобальный минимум. Аналогично, если , то функция убывает до минус бесконечности с обеих сторон, а значит, имеет глобальный максимум.

Теорема Виета для уравнения четвёртой степени

Корни уравнения четвёртой степени связаны с коэффициентами следующим образом:

История

Уравнения четвёртой степени впервые были рассмотрены древнеиндийскими математиками между IV в. до н. э. и II в. н. э.

Лодовико Феррари приписывается получение решения уравнения четвёртой степени в 1540 году, но его работа опиралась на решение кубического уравнения, которого у него не было, поэтому сразу это решение не было опубликовано, а было опубликовано только в 1545 вместе с решением кубического уравнения наставника Феррари — Джероламо Кардано в книге « Великое искусство » .

То, что это наибольшая степень уравнения, для которого можно указать общую формулу решения, было доказано в теореме Абеля — Руффини в 1824. Записки, оставленные Галуа , позже привели к элегантной теории корней многочленов, одним из результатов которой была эта теорема .

Решения

Решение через резольвенту

Решение уравнения четвёртой степени

сводится к решению кубической резольвенты

Корни резольвенты связаны с корнями исходного уравнения (которые и нужно найти) следующими соотношениями:

Корни резольвенты могут быть найдены по формуле Кардано .

Три формулы соотношений между и вместе с уравнением ( соотношение Виета для коэффициента при )

дают систему из 4 алгебраических уравнений с 4 неизвестными, которая легко решается.

Решение Декарта — Эйлера

В уравнении четвёртой степени

сделаем подстановку , получим уравнение в следующем виде (оно называется «неполным»):

где

Корни такого уравнения равны одному из следующих выражений:

в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:

причём — это корни кубического уравнения

Решение Феррари

Решение уравнения четвёртой степени вида может быть найдено по методу Феррари. Если — произвольный корень кубического уравнения

( резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений

где подкоренное выражение в правой части является полным квадратом .

Биквадратное уравнение

Биквадратное уравнение — алгебраическое уравнение четвёртой степени вида , где — заданные комплексные числа и . Иначе говоря, это уравнение четвёртой степени, у которого второй и четвёртый коэффициенты равны нулю. Подстановкой оно сводится к квадратному уравнению относительно .

Четыре его корня находятся по формуле

Возвратные уравнения четвёртой степени

Возвратное уравнение четвёртой степени является также относительно легко решаемым: для такого, что , решение находится приведением к виду:

,

После замены ищется решение квадратного уравнения , а затем — квадратного уравнения .

Примечания

  1. . Дата обращения: 26 сентября 2009. 29 октября 2009 года.
  2. от 26 июня 2008 на Wayback Machine , 1545 )
  3. Стюарт, Ян . Теория Галуа, издание третье (Chapman & Hall/CRC Mathematics, 2004) (англ.)
  4. В литературе до середины XX века биквадратным также могли называть уравнение четвёртой степени общего вида

Литература

  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М. : Наука , 2003. — 832 с. — 5000 экз. ISBN 5-8114-0485-9 .
  • Лекция 4 в кн.: Табачников С. Л., Фукс Д. Б. . — М. : МЦНМО , 2011. — 512 с. — 2000 экз. ISBN 978-5-94057-731-7 .

Ссылки

  • (англ.) . Дата обращения: 27 сентября 2009. 19 февраля 2012 года.
  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  • (англ.) на сайте PlanetMath .
Источник —

Same as Уравнение четвёртой степени