Interested Article - Линейно-квадратичное гауссовское управление
- 2020-12-31
- 2
Линейно-квадратичное гауссовское управление ( англ. Linear quadratic Gaussian control, LQG control ) — набор методов и математического аппарата теории управления для синтеза систем управления с отрицательной обратной связью для линейных систем с аддитивным гауссовским шумом. Синтез проводится путём минимизации заданного квадратичного функционала .
Обзор
Линейно-квадратичное гауссовское (ЛКГ) управление относится к современным методам управления. Методология синтеза контроллера позволяет отнести системы управления, построенные на таком принципе, к оптимальным системам , в которых оптимизация проводится по некоторому заданному квадратичному критерию качества. Также эта теория принимает в расчёт присутствие возмущений в виде гауссова белого шума . Однако несмотря на то, что синтез ЛКГ-контроллеров предусматривает систематическую процедуру расчёта для оптимизации качества системы, главным его недостатком является то, что в рассмотрение не принимается робастность системы. Поэтому ЛКГ-синтез проводится только для систем, имеющих надёжную и точную линейную динамическую модель. Для повышения робастности системы управления применяют более сложные алгоритмы, такие как минимаксный ЛКГ синтез, или комбинированный ЛКГ/ H∞ синтез. ЛКГ контроллеры могут использоваться как для дискретных, так и для непрерывных систем.
ЛКГ-синтез
В процессе ЛКГ-синтеза получается оптимальный регулятор для некоторого объекта управления .
Представим модель системы в пространстве состояний :
- ,
где
- — вектор состояния , элементы которого называются состояниями системы ,
- — вектор выхода ,
- — вектор управления ,
- — возмущения, действующие на объект управления,
- — шум измерения ( датчики , АЦП и т. п.),
- — матрица системы ,
- — матрица управления ,
- — матрица выхода,
- — матрица прямой связи .
Шум объекта управления и шум измерения считаются белыми с гауссовым распределением .
Тогда задача синтеза ЛКГ-регулятора будет заключаться в минимизации некоторого функционала качества, который задаётся в виде:
Матрицы и представляют собой параметры функционала качества и являются положительно-определёнными матрицами .
Описанная выше методология подходит также для синтеза ЛКГ-оптимальных регуляторов и для дискретных систем. Функционал качества в этом случае задаётся соотношением:
Функционал качества минимизируется стандартными методами теории оптимального управления . Получившийся в результате регулятор будет ЛКГ-оптимальным регулятором.
См. также
Литература
- Бахилина И. М., Степанов С. А. Синтез грубых линейных квадратичных гауссовских регуляторов//Автоматика и телемеханика. — 1998. — № 7. — С.96-106.
- Методы классической и современной теории автоматического управления: Учебник в 3-х томах. Т.3: Методы современной теории автоматического управления / Под ред. Н. Д. Егупова. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2000. — 748с.
- M. Athans . «The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design», IEEE Trans. Automat. Contr., AC-16, pp. 529—552, Dec. 1971.
- 2020-12-31
- 2