Электромагнитная помеха
- 1 year ago
- 0
- 0
Онкологическая электромагнитная терапия (ЭМТ) — лечение онкологических заболеваний с применением электромагнитных полей.
В онкологической ЭМТ применяются как постоянные (стационарные, СЭМП), так и переменные электромагнитные поля (ПЭМП, электромагнитное излучение ). В целях лечения, под электромагнитным понимается от 10 декабря 2014 на Wayback Machine ( ионизирующее излучение является предметом лучевой терапии ). В рамках неионизирующего излучения выделяют радиоволновой и оптический диапазоны , а в рамках радиоволнового — собственно радиочастотный и микроволновой .
Источником излучения в радиоволновом диапазоне является от 12 октября 2014 на Wayback Machine , схематически состоящий из катушки индуктивности , конденсатора ( ёмкости ), антенны и соединяющих проводников . ЭМ энергия в каждой половине цикла попеременно запасается в магнитном поле катушки или в электрическом поле конденсатора и покидает контур посредством излучения с антенны. Задачей ЭМТ является передача РЧ-энергии из колебательного контура в тело пациента ( от 16 декабря 2014 на Wayback Machine ). Эта задача может решаться несколькими способами.
Эти виды сопряжения реализуются в пределах от 11 января 2015 на Wayback Machine , когда расстояние до объекта меньше длины волны, т. е. в радиочастотном диапазоне (<300 МГц). Биологический объект непосредственно взаимодействует c РЧ-контуром (является его частью).
В зависимости от вида сопряжения выделяют несколько видов ЭМТ:
Поглощение энергии электромагнитного поля клетками и тканями может приводить к повышению температуры или выполнению работы; во втором случае только часть энергии направляется на повышение температуры (пропорционально КПД процесса). Ожидаемый эффект ЭМТ может быть связан или с нагревом (повышением макроскопической температуры) ( термозависимый эффект), или с выполнением работы по модификации/разрушению клеток и тканей ( нетермозависимый эффект). При этом нетермозависимость эффекта не означает отсутствия нагрева, поскольку КПД работы значительно ниже 100%, а наличие нагрева не эквивалентно термозависимости эффекта, поскольку часть энергии неизбежно затрачивается на выполнение работы (КПД нагрева также значительно ниже 100%). Таким образом, любой вид ЭМТ является сочетанием термозависимых (определяемых повышением температуры биологического объекта) и нетермозависимых (не зависящих от температуры биологического объекта) эффектов; их соотношение определяется КПД процесса.
На раннем этапе развития ЭМТ значение и само существование нетермозависимых эффектов в области высокочастотных полей отрицалось, что привело к формированию "термальной догмы", сводившей воздействие высокочастотной ЭМТ исключительно к нагреву . В настоящее время нетермозависимые эффекты высокочастотной ЭМТ достоверно показаны и широко используются в медицине и онкологии.
Начало электромагнитной терапии (ЭМТ) положили работы Николя Теслы в США и Арсена д’Арсонваля во Франции. Оба считали основным действующим механизмом непосредственное воздействие переменных электромагнитных полей (ПЭМП) на ткани и клетки, а неизбежный нагрев тканей рассматривали как нежелательный эффект .
д’Арсонваль считается «отцом» ЭМТ, поскольку всесторонне исследовал ёмкостной и индуктивный методы ЭМТ и является автором первой технологии ЭМТ, названной по его имени дарсонвализацией . Для снижения «нежелательного нагрева» и повышения «полевых эффектов» в дарсонвализации применялось высокое напряжение при низкой силе тока .
Тесла и д’Арсонваль не создали приемлемой концепции механизма действия ПЭМП, а также на смогли предоставить доказательств нетермических эффектов. д’Арсонваль пытался показать его на бактериях и токсинах, а Тесла сообщил о нетермическом летальном воздействии высокочастотных полей на Mycobacterium tuberculosis, но результаты были неубедительными .
Около 1905 г. Фон Зенек изобрел диатермию , первую технологию электромагнитной термотерапии, направленную исключительно на нагрев тканей, для чего применялась высокая сила тока при низком напряжении. Между 1910 и 1920 гг. диатермия сформировалась в её классическом виде как метод глубокого, преимущественно ёмкостного нагрева с частотой 0.5-2 МГц и силой тока 1-3 A . В отличие от дарсонвализации, термотерапия имела простую, понятную и очевидную концепцию, основанную на повышении кровотока, с непосредственно наблюдаемым спазмолитическим и быстрым трофическим эффектом.
Быстрое развитие диатермии связано в основном с именем Нагельшмидта , который впервые заявил, что нагрев является единственным эффектом ЭМП. С этого момента началась борьба термической и нетермической концепций ЭМТ. Ввиду отсутствия доказательств, уже в 20-х гг. нетермическая концепция эффекта ПЭМП стала считаться ненаучной.
В 1920 г. был изобретен магнетрон, что позволило получать частоты до 150 МГц и открыло радиочастотную (РЧ) эру в электромедицине. В 1928 г. было обнаружено, что температура тела вблизи коротковолновых излучателей повышается на 2-3 градуса . Так был открыт излучательный метод нагрева. В 1931 г. Уитни, вице-президент "Дженерал Электрик", разработал "Радиотерм", первое специализированное гипертермическое устройство c рабочей частотой около 20 МГц .
После 1920 г. нетермические эффекты ЭМП были многократно показаны в РЧ-диапазоне как in vitro, так и in vivo . Наибольшую известность получили работы американского хирурга Шерешевского. В 1926 г. он сообщил о летальном эффекте РЧ-поля с частотой 8.3-135 МГц на мышей с максимумом при 20-80 МГц и без существенного нагрева, и предположил специфический нетермический эффект РЧ-полей, основанный на высокочастотной вибрации . Получив должность в медицинской школе Гарварда, Шерешевский продолжил исследования, и в 1928 г. сообщил о разрушении опухолевых трансплантатов у мышей, вновь без существенного нагрева . При 67 МГц частота полной ремиссии в опытной группе составила 23% против 0% в контрольной группе, а излучение с частотой 135 МГц не обнаружило противоопухолевого эффекта. Шерешевский сделал вывод о наличии опухоль-разрушающего диапазона частот 20-80 МГц.
Работы Шерешевского вызвали сильную «термическую» оппозицию. В 1927-1929 гг. Кристи с соавт. из Фонда Рокфеллера опубликовал серию статей по диатермии . Итоговый тезис звучал так: «Каждый, кто говорит о любых других биологических эффектах высокочастотных токов, кроме термопродукции, должен доказать это» . Этот тезис стал официальной позицией электромагнитной медицины ("термальная догма").
В 1933 г. Шерешевский, будучи под сильным «термальным» давлением, отказался от своей «ненаучной» точки зрения и признал термическую сущность своих открытий .
В 1928 г. немецкий физик Эрвин Шлипфаке разработал т. н. «коротковолновую терапию», первую коммерческую нетермическую технологию . В 1932 г. в Германии вышла монография «Коротковолновая терапия» , которая уже в 1935 г. была переиздана в Англии, а всего выдержала в Германии 6 переизданий (до 1960 г.) Широкое использование метода и аппарата Шлипфаке в США привело к вмешательству Американской медицинской ассоциации (АМА) в 1935 г.: «огромные продажи нового типа высокочастотных устройств» обсуждались в предварительном докладе физиотерапевтического совета и было заявлено, что широкое использование этих устройств может привести только к недостаточным результатам и дискредитации диатермии как полезного метода лечения . Окончательный отчет вновь подтвердил позицию медицинского сообщества, состоящую в исключительно термическом эффекте ЭМП .
В 1933 г. Рейтер сообщил о нетермическим РЧ-эффекте на метаболизм опухолей in vitro , что вызвало два ответа лидеров мнений в Nature в 1936 , вновь подтвердивших официальную позицию медицинского сообщества, состоящую в отсутствии специфических нетермических эффектов РЧ-полей.
В конце 30х гг. «нетермическое сопротивление» было окончательно сломлено, "термальная догма" стала основой ЭМТ.
В 1937 г. был изобретен триод и модернизирован магнетрон, а в 1939 братья Вариан в Стэнфорде разработали первый клистрон. Эти изобретения позволили получить излучение гигагерцового (УВЧ) диапазона, и открыли микроволновую эру, но с 1940 г. магнетроны и клистроны стали недоступными для медицинских целей: приближалась война и все силы были брошены на разработку радаров, поэтому первые работы по микроволновой диатермии появились только в начале 50х гг., после Второй мировой войны.
Таким образом, в конце 30х гг. все известные методы ЭМТ были известны и использовались на практике; теплопродукция была окончательно признана единственным биологическим эффектом высокочастотных полей; началось применение гипертермии в качестве самостоятельного метода лечения; были продемонстрированы нетермические эффекты РЧ-полей и первая нетермическая РЧ-технология получила широкое распространение, не будучи признанными официальной наукой.
Несмотря на большое количество доказательств нетермических эффектов ПЭМП, официальной позицией стала «термальная догма»: единственным эффектом ВЧ ПЭМП признавался нагрев, а значимость и само существование нетермических эффектов отрицались.
С 1948 по 1953 гг. было опубликовано несколько работ по микроволновой диатермии, после чего последовала длительная пауза, вызванная обнаружением побочных эффектов микроволн – катаракты у собак и кроликов и тестикулярной дегенерации у крыс. Одновременно были получены доказательства опасности микроволн в промышленности и армии. Как следствие, с 1953 по 1960 исследовательская активность в области микроволн полностью сместилась с медицинского применения на разработку стандартов безопасности. В 1957-1960 гг. в США под эгидой Министерства обороны США выполнялась так называемая «тройная программа» (Tri-Service program) по разработке стандартов безопасности микроволнового воздействия .
Основной вклад в развитие теории биологических эффектов ПЭМП внес Герман Шван, немецкий физик на контракте Министерств обороны США. Около 1953 г. Шван начал систематическое исследование механизмов поглощения микроволнового излучения тканями и обнаружил, что оно неравномерно и зависит от частотных свойств тканей и их компонентов . Шван показал, что микроволновое воздействие должно основываться на точных биофизических расчетах, и что «эффективность существующих микроволновых устройств непредсказуема с практической точки зрения», а экспериментальные методы крайне сомнительны . Электромагнитная медицина требовала адекватной биофизической базы, которая ещё не была создана . Как очевидно из материалов симпозиума по биологическим эффектам микроволн, прошедшего в июне 1970 в Ричмонде (США) , в то время существовали только начальные представления о предмете, которые подлежали уточнению во всех направлениях. Зюскинд фигурально сравнил микроволновые устройства того времени со «стрельбой из пушки в темной комнате» . Создание научной базы микроволновой терапии было в основном закончено к начале 80-х гг., когда была создана теория взаимодействия высокочастотных ПЭМП с биологическими тканями и определены диэлектрические свойства различных тканей и органов .
Смещение акцента с прикладных исследований на фундаментальные привело к быстрому накоплению данных о нетермических эффектах ПЭМП.
В 1951 Пол обнаружил, что диэлектрические частицы в ПЭМП движутся в направлении градиента ПЭМП . Этот феномен получил название диэлектрофореза (ДЭФ). В 1966 г. Пол использовал ДЭФ для разделения живых и мертвых клеток , а в 70-х метод был разработан в деталях и введен в широкую практику .
В 1959 г. исследователи клиники Мейо переоткрыли ориентировочный эффект ПЭМП, ранее описанный Мут и Лебесны ): капельки жира в разведённом молоке выстраивались в цепи под действием высокочастотного тока . Этот эффект получил название «жемчужных нитей» и был необъясним с тепловой точки зрения. Хеллер с соавт. описали эффект выстраивания в линию одноклеточных микроорганизмов вдоль или поперек силовых линий поля (в зависимости от частоты) под действием слабого ПЭМП , а также развитие хромосомных аномалий, аналогичных воздействию ионизирующего излучения и антимитотических агентов, после 5-минутного нетермического воздействие ПЭМП на эмбрионы чеснока , и предположили, что причиной этого является ориентировочный эффект ПЭМП.
В 1959 г. было опубликовано исследование Хамфри и Сила по применению для лечения рака постоянного тока , давшее начало развитию гальванотерапии рака (хотя уже работы конца XIX в. демонстрируют вполне зрелое понимание этой технологии ). В 1978 г. Норденстрём сообщил о первых клинических результатах применения гальванизации, названной им «электроканцерной терапией», при раке лёгких .
В 1970 г. Парею и Сикар обнаружили эффект слабого (10-200 мА) низкочастотного переменного тока (50Гц) на Escherichia coli . В 1992 г. этот эффект был переоткрыт канадскими исследователями и назван «биоэлектрическим эффектом» (БЭЭ) .
В 1972 г. Ньюман и Розенбек обнаружили повышение проницаемости мембран после импульса постоянного тока, что привело к развитию технологии электропорации (ЭП) . Она была теоретически обоснована Кроули и Циммерманом в 1973-1974 гг. и с середины 70-х гг. прочно вошла в арсенал клеточной биологии как метод трансфекции (примечательно, что даже в 1977 г. обсуждение электроразрыва мембран начинается с обоснования нетермического характера этого эффекта). В 1989 г. Чанг применил для электропорации переменный РЧ-ток и получил более эффективную трансфекцию при существенно меньшей доле необратимого клеточного повреждения .
В 1982 г. Шван суммировал имеющиеся на тот момент данные о нетермических эффектах ПЭМП и выделил следующие феномены: 1) образование «жемчужных нитей», 2) пространственная ориентация несферических частиц и клеток, 3) диэлектрофорез, 4) деформацию клеток, 5) разрушение клеток, 6) слияние клеток, 7) вращение клеток .
Начиная с 1965 г. началось развитие современной гипертермии, инициированное в основном работами Манфреда фон Арденн. К 1985 г. гипертермия стала мейнстримом ЭМТ и рассматривалась как универсальный химио- и радиомодификатор и потенциальный четвёртый базовый метод лечения рака (См. Онкологическая гипертермия ).
"Термальная догма" де факто дезавуирована: после получения нетермической технологией противоопухолевых полей (TTF) в 2011 г. разрешение FDA на клиническое применение реальность и эффективность нетермических технологий более не подлежит сомнению. В 2009 г. на примере технологии модулированной электрогипертермии было объективно показано in vivo, что вклад нетермических эффектов в суммарный клинический эффект при электромагнитном нагреве может в 2-3 раза превышать вклад собственно температуры .
В области гипертермии (41-45°С) температурная концепция исчерпала себя и стагнирует с начала 90-х гг.
Напротив, технологии высокоинтенсивной термотерапии (ВИТТ) и термоабляции (ТА) активно развивались. Ряд технологий ВИТТ-ТА вошли в клиническую практику, в частности:
В результате, начиная с 2000-х гг. интересы термотерапии переместились в область высокоинтенсивной термотерапии, а температурная гипертермия окончательно ушла с передовой линии исследований в онкологии, так и не войдя в клиническую практику.
Хотя дальнейшее развитие гипертермии в рамках температурной концепции представляется невозможным (См. Онкологическая гипертермия ), температурная гипертермия продолжает существовать как экспериментальная дисциплина без определенных перспектив клинического применения . Перспективы развития онкологической гипертермии связаны с развитием нетермозависимых гипертермических технологий и, возможно, внедрением таргетных ферромагнитных препаратов (пока прогресса в этой области нет).
Начиная с 1980-x гг., нетермические эффекты выходят на первый план в электромагнитных исследованиях. Уже в 1981 г. Агентством по защите окружающей среды США и Военно-морским департаментом США был опубликован перечень 3627 исследований по нетермическим биологическим эффектам электромагнитного излучения в диапазоне 0-100 ГГц . Накопленные данные суммированы в ряде фундаментальных обзоров и монографий .
В настоящее время нетермические эффекты можно классифицировать следующим образом :
Суммирование этих микроэффектов ведёт к развитию нетермических макроэффектов:
от 10 апреля 2015 на Wayback Machine ПЭМП наиболее изучены, понятны и широко применяются.
Доказана способность ПЭМП подавлять клеточную пролиферацию и показан резонансоподобный характер этого эффекта. Барбó с соавт. обнаружил в диапазоне от 0.1 Гц до 114 кГц 1524 частоты, подавляющие рост опухолей . Выполняется рандомизированное клиническое исследование по применению амплитудно-модулированных ЭМП низкой мощности для лечения рака . Недавно получившая разрешение FDA технология «противоопухолевых полей» ( от 10 декабря 2014 на Wayback Machine ) эффективно подавляет опухолевый рост при частоте 100 кГц . Антипролиферативный эффект ПЭМП объясняется на основе субклеточного пондеромоторного эффекта (диэлектрофоретические силы подавляют сборку митотического веретена ) либо мембранотропного эффекта (деление клетки связано со снижением мембранного потенциала, но под влиянием ПЭМП мембранный потенциал делящейся клетки растет вследствие быстрых нелинейных процессов гиперполяризации и деполяризации, что подавляет пролиферацию ), либо резонансного эффекта . Вне зависимости от объяснения, эффект доказан объективно .
Показана значительная (13.5̥%) и достоверная (p<0.001) способность субтермального (ΔT<0.1°C) 24-часового воздействия слабого (0.023 W/kg) пульсирующего сигнала с частотой 2.2 GHz уменьшать количество клеток нейробластомы NB68 в культуре и смещать клеточный цикл . Технология резистивно-емкостного электропереноса (capacitive-resistive electric transfer, CRET) подавляет злокачественную пролиферацию и стимулирует дифференцировку клеток .
К концу XX века количество нетермических публикаций достигло критической массы (более 20,000 по данным Pubmed), что сделало неизбежным переход к практической реализации. В настоящее время существует ряд установившихся технологий онкологических ЭМТ, основанных на нетермических эффектах ЭМП:
Ряд нетермических технологий коммерциализирован, другие близки к коммерциализации.
(на основе с изменениями)
Технология | Торговая марка | Система | Изобретатель | Внедрение | Компания | Год |
---|---|---|---|---|---|---|
Электропорация | ECT ( от 20 марта 2015 на Wayback Machine ) | от 21 августа 2016 на Wayback Machine | LM Mir (Франция) | Разрешено в ЕС | от 20 июня 2016 на Wayback Machine (Италия) | 1980 |
Электропорация | EGT ( от 20 марта 2015 на Wayback Machine ) | RM Bernard | Разрешение FDA для клин. испытаний | (США) | 1994 | |
Электропорация | ECT ( от 20 марта 2015 на Wayback Machine ) | от 13 июня 2016 на Wayback Machine | GA Hofmann, DP Rabussay, Z Zhang (США) | Разрешено в ЕС | от 18 июня 2016 на Wayback Machine (США) | 1997 |
Электрогипертермия | Онкотермия (модулированная электрогипертермия) | , | A Szasz (Венгрия) | Разрешено в ЕС, России, Ю. Корее | (Венгрия-Германия) | 1998 |
Электрополевая терапия | TTF ( от 10 декабря 2014 на Wayback Machine ) | A | Y Palty (Израиль) | Разрешение FDA | (Израиль) | 2000 |
Гальванотерапия | EChT (Электрохимическая терапия) | NEUFLO | Schroeppel EA, Kroll MW (США) | Разрешение FDA для клин. испытаний | (США) | 2000 |
Гальванотерапия | EChT (Электрохимическая терапия) | ECTplus | Н/Д | Разрешено в ЕС | CUTH Meditech GmbH (Германия) | 2006 |
РЧ-интерферометрия | Радиочастотная интерферометрия | от 15 июля 2016 на Wayback Machine | C. Verduccio | Разрешено в ЕС | Selex Galileo (Италия) | 2003 |
По объективным причинам максимальная активность нетермических исследований концентрируется в двух областях: безопасности ПЭМП крайне низкой частоты (КНЧ-ПЭМП, <300 Гц), излучаемых электрическими сетями и оборудованием, и безопасности высокочастотных крайне слабых ПЭМП (КС-ПЭМП), излучаемых сотовыми телефонами . Оба направления обусловлены тем, что старые, термические лимиты безопасности ПЭМП испытывают сильное давление фактов, свидетельствующих о потенциальной опасности нетермических эффектов ПЭМП . В настоящее время как КНЧ-ПЭМП, так и КС-ПЭМП признаны потенциально опасными , но предельные уровни безопасности пока устояли, хотя процесс ещё не закончен.
К сожалению, оба главных нетермических направления исследований бесполезны с медицинской точки зрения: диапазон КНЧ (<300 Гц) находится вне диапазона резонансных частот клеточных, субклеточных и молекулярных структур, который лежит в кило-мегагерцовой области , а мощность КС ПЭМП ниже предела физиологического "шума" 10 мВт/см 2 .
Пока не до конца понятны и доказаны тонкие, субклеточные механизмы слабых ПЭМП. Предполагается воздействие на ДНК , молекула которой может выступать в качестве фрактальной антенны, обладающей электронной проводимостью и аутосимметрией, способной взаимодействовать с ПЭМП в низкочастотном и радиочастотном диапазонах . Показано, что воздействие крайне слабых ПЭМП (КС-ПЭМП) нетермического уровня на ДНК приводит к экспрессии белков теплового шока (HSP70) . Показано, что протеины могут действовать как молекулярные машины, превращающие энергию из одной формы в другую посредством циклических конформационных переходов, и что эти молекулы способны абсорбировать энергию ПЭМП . Это особенно относится к ферментам, функция которых основана на циклических конформационных переходах — в частности, Na+/K+-ATФазе : ПЭМП выступают в качестве внешнего источника энергии, позволяющего смещать реакцию от равновесного состояния . Тем не менее, практическое значение этих механизмов неясно. В многочисленных экспериментах, выполняемых в течение пяти лет, по сравнению влияния микроволнового нагрева на скорость химических реакций в обычном сосуде и в сосуде из карбида силикона, эффективно поглощающего микроволновое излучение, при равенстве температур различий в скорости реакций не обнаружено .
Существенной проблемой является систематическая ошибка нетермических исследований, проистекающая из термальной догмы, и заключающаяся в вынесении нетермических эффектов исключительно в нетермический диапазон, когда отсутствует макроскопическое повышение температуры . Это неверный и бесплодный подход, поскольку термические и нетермические эффекты развиваются одновременно, и, согласно классической сентенции Г. Шван, «невозможно добиться достаточно сильного нетермического эффекта при тех значениях напряженности поля, которые не вызывают существенного нагрева» . На основе биофизических критериев показано, что ЭМ-излучение с интенсивностью менее 10 мВт/см 2 вряд ли способно вызывать физиологические эффекты посредством нетермических механизмов, поскольку фундаментальной особенностью биологических систем является наличие «шума» как на молекулярном, так и на клеточном уровне, и эффект, вызванный ПЭМП, должен превышать уровень этого повсеместного эндогенного шума, чтобы проявиться . Неудачи предшествующих нетермических технологий связаны с попыткой оставаться «нетермическими», поскольку любое повышение температуры вело к признанию их эффекта термическим. Такой подход представляет опасность также для новых нетермических технологий. Технология онкотермии пока является единственной, осознающей эту проблему, и обоснованно разделяющей вклад температуры и нетермических эффектов в общий эффект при температурах гипертермического диапазона .
Другим аспектом этой систематической ошибки является стремление видеть термальные эффекты даже за пределами термального диапазона: они все равно считаются термальными по своей природе – «слабыми термальными» или «квази-тармальными». Идеи «молекулярного термометра» , который регистрирует те изменения температуры, которые не регистрируются термометрией, или «резонансного нагрева в горячих микропятнах» являются яркими примерами этого типа мышления, и по сути превращают отношение «термальных» и «нетермических» эффектов в схоластическую проблему «курицы и яйца». Очевидно, что любой механический процесс сопровождается термодинамическими изменениями, но это не делает его термальным по природе.
Проблема усугубляется тем, что изучение КС-ПЭМП ведётся на пределе чувствительности современных методов, что неизбежно порождает многочисленные ошибки . Новые скрининговые методики транскриптомики, протеомики и метаболомики обладают низкой воспроизводимостью и значительной вариабельностью в обнаружении биологических эффектов ПЭМП со склонностью к ложноположительным результатам .
Существует также ряд субъективных проблем нетермических исследований, в основном вызванных теоретическими и практическими ошибками исследователей. Большое разнообразие и всеобщая распространенность нетермических эффектов создают ложное впечатление, что практически любое электромагнитное воздействие можно использовать для лечения рака, хотя, на самом деле, существует ограниченное количество пригодных для этого комбинаций параметров поля и технологий их применения. Наблюдается тенденция к некритичной экстраполяции различных известных эффектов ПЭМП без учёта мощности и типа поля , хотя не существует ни одного электромагнитного режима, в котором в равной степени представлены все известные эффекты ПЭМП: они распределены во всем диапазоне частот и мощностей, и каждый имеет свой оптимум. Распространенной ошибкой является использование для объяснения эффектов крайне слабых полей пондеромоторных эффектов, которые требуют значительной мощности поля. Демодуляция, молекулярные, атомарные и субатомарные эффекты КС ПЭМП становятся горячей темой в исследованиях , но реальное значение этих, по сути, информационных эффектов спорно.
Существует ряд технологий ЭМТ, относимых к категории псевдонаучных . Это технологии неконвенциональной (альтернативной) медицины , основанные на применении крайне слабых или крайне низкочастотных полей, или неустановленных (недетектируемых) видов энергии , декларирующие в качестве основных информационно-коммуникационные, резонансные или "энергетические" эффекты, клиническая эффективность которых сомнительна .
Наиболее известными из них являются:
Следует, однако, иметь в виду, что официальная позиция в отношении этих методов изменяется. До 80-х гг. все электромагнитные нетермические методы в онкологии по определению признавались псевдонаучными, так как в соответствии с "термальной догмой" доказанными считались только термальные эффекты высокочастотных электромагнитных полей. Начиная с 80-х гг., развитие теории и практики нетермических методов ЭМТ амбивалентной : декларируется, что есть эффективные и неэффективные методы при отсутствии каких-либо технических критериев. Такой подход оставляет возможность того, что эффективность т. н. "неэффективных" методов будет со временем показана, как это случилось, например с нетермическими технологиями на примере технологий от 10 декабря 2014 на Wayback Machine или переменных магнитных полей ( от 30 апреля 2020 на Wayback Machine и от 17 декабря 2014 на Wayback Machine ). Идеи от 13 ноября 2014 на Wayback Machine об опухоль-специфических резонансных частотах, с 50-х гг. XX века считающиеся классическим примером шарлатанства , в настоящий момент получают второе рождение в работах Барбо с соавт ., что в перспективе создает возможность признания "научности" биорезонансной терапии .
непрерывно расширяет границы "научной" ЭМТ. Как следствие, современная позиция Американского Онкологического Общества сталаНациональный центр комплементарной и альтернативной медицины США ( от 13 декабря 2014 на Wayback Machine ) (подразделение "Национальных институтов здравоохранения США" (NIH)) оперирует в отношении неконвенциональных методов ЭМТ только критериями "детектируемой" (veritable — действительной, обнаруживаемой) и "недетектируемой" (putative — мнимой) энергии . В отношении детектируемых технологий ЭМТ критерием потенциальной эффективности может быть мощность излучения: технологии, использующие мощность ниже 10 мВт/см 2 , т. е. ниже порога эндогенного электромагнитного шума , вряд ли могут быть клинически эффективными. Пока нет оснований говорить о научности методов, основанных на недетектируемых энергиях.