Interested Article - Теорема Кука — Левина
- 2021-09-28
- 1
Теорема Кука — Левина (также просто теорема Кука ) утверждает, что задача о выполнимости булевой формулы в КНФ ( SAT ) является NP-полной .
Доказательство этой теоремы, полученное Стивеном Куком в его фундаментальной работе в 1971 году, стало одним из первых важнейших результатов теории NP-полных задач. Независимо в то же время эта теорема была доказана советским математиком Леонидом Левиным .
В доказательстве теоремы Кука каждая задача из класса NP в явном виде сводится к SAT. С. Кук (S. Cook) определил класс NP задач следующим образом. Задача принадлежит классу NP, если:
- решением задачи является один из двух ответов: «да» или «нет» ( );
- требуемый ответ может быть получен на недетерминированном вычислительном устройстве за полиномиальное время.
Этот класс, как позже показал Р. Карп (R. Karp), в свою очередь содержит в себе другой широкий класс задач, названный Карпом NP-полные задачи , или NPC, сводимые в пределах этого класса одна к другой.
После появления результатов Кука была доказана NP-полнота для множества других задач. При этом чаще всего для доказательства NP-полноты некоторой задачи приводится полиномиальное сведение задачи SAT к данной задаче, возможно в несколько шагов, то есть с использованием нескольких промежуточных задач.
Примечания
- Л. А. Левин. Т. 9 , № 3 . — С. 115—116 . 10 октября 2017 года. // Проблемы передачи информации. — 1973. —
Ссылки
- 2021-09-28
- 1