Interested Article - Медиана треугольника

Треугольник и его медианы.

Медиа́на треуго́льника ( лат. mediāna — средняя) ― отрезок в треугольнике, соединяющий вершину треугольника с серединой стороны, противоположной этой вершине. Иногда медианой называют также прямую , содержащую этот отрезок, а иногда длину этого отрезка. Точка пересечения медианы со стороной треугольника называется основанием медианы .

Если ― треугольник, и , , ― длины сторон (или просто стороны), то медианы, проведённые соответственно из вершин , , к сторонам , , , обычно обозначаются , и .

Связанные определения

Точка пересечения медиан делит каждую медиану на два отрезка. Отрезок от вершины до точки пересечения называется предмедианой , а отрезок от точки пересечения до противоположной стороны постмедианой . В частности можно сказать, что в любом треугольнике отношение предмедианы к постмедиане равно двум .

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке , которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой . Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Если медианы равнобедренного треугольника, проведённые к боковым сторонам, пересекаются под прямым углом, то косинусы углов при основании этого треугольника равны , а косинус противоположного основанию угла равен .

Свойства оснований медиан

Окружность девяти точек
  • Теорема Эйлера для окружности девяти точек : основания трёх высот произвольного треугольника, середины трёх его сторон ( основания его медиан ) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (так называемой окружности девяти точек ).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией . Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие ( теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема . Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (то есть 3 высоты также обязаны пересечься в 1 точке).

Другие свойства

  • Если треугольник разносторонний ( неравносторонний ), то его биссектриса , проведённая из любой вершины, лежит между медианой и высотой , проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Медиана делит пополам любой отрезок, параллельный стороне, к которой проведена эта медиана.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна .
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника .
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана .
  • Медиана угла треугольника изотомически сопряжена самой себе.
Бесконечно удаленная прямая — трилинейная поляра центроида

Основные соотношения

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где — медианы к соответствующим сторонам треугольника, — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где — полусумма длин медиан.

Вариации и обобщение

См. также

Примечания

  1. Стариков В. Н. 10-е исследование по геометрии (§ До- (пред-)- и пост-чевианы)// Научный рецензируемый электронный журнал МГАУ «Наука и образование». 2020. № 1. 7 с.// 1604
  2. Дмитрий Ефремов . от 25 февраля 2020 на Wayback Machine . — Одесса, 1902. — С. 16.

Литература

  • Ефремов Дм. , 1902 год.
Источник —

Same as Медиана треугольника