Теорема Стокса
- 1 year ago
- 0
- 0
Теоре́ма Менела́я , или теорема о трансверсалях , или теорема о полном четырёхстороннике , — классическая теорема аффинной геометрии .
Если точки и лежат соответственно на сторонах и треугольника или на их продолжениях , то они коллинеарны тогда и только тогда, когда
где , и обозначают отношения направленных отрезков .
Проведем через точку прямую, параллельную прямой , и обозначим через точку пересечения этой прямой с прямой . Поскольку треугольники и подобны (по двум углам), то
Так как подобными являются также треугольники и , тем самым
Исключая , получаем
Возможны два расположения точек и : либо две из них лежат на соответствующих сторонах треугольника, а третья — на продолжении, либо все три лежат на продолжениях соответствующих сторон. Отсюда для отношений направленных отрезков имеем
Эта теорема доказывается в третьей книге «Сферики» Менелая Александрийского (около 100 года нашей эры). Менелай сначала доказывает теорему для плоского случая, а потом центральным проектированием переносит её на сферу. Возможно, что плоский случай теоремы рассматривался ранее в несохранившихся «Поризмах» Евклида.
Сферическая теорема Менелая была основным средством, с помощью которого решались разнообразные прикладные задачи позднеантичной и средневековой астрономии и геодезии. Ей посвящён ряд сочинений под названием «Книга о фигуре секущих», составленных такими математиками средневекового Востока, как Сабит ибн Корра , ан-Насави , ал-Магриби , ас-Сиджизи , ас-Салар , Джабир ибн Афлах , Насир ад-Дин ат-Туси .
Итальянский математик Джованни Чева в 1678 году предложил доказательство теоремы Менелая и родственной ей теоремы Чевы для плоского случая, основанное на рассмотрении центра тяжести системы из трёх точечных грузов.