Условно-досрочное освобождение
- 1 year ago
- 0
- 0
Теорема Римана об условно сходящихся рядах — теорема в математическом анализе , которая утверждает, что, переставляя члены произвольного условно сходящегося ряда , можно получить произвольное значение. Этот факт показывает разницу между условной сходимостью и абсолютной сходимостью : если ряд сходится абсолютно, то он будет сходиться к одному и тому же значению вне зависимости от перестановки его элементов (см. Теорема о перестановке ряда ).
Пусть дан числовой ряд , который сходится условно , тогда для произвольного числа можно так поменять порядок элементов ряда, что сумма нового ряда станет равна этому числу. Более того, можно так переставить элементы ряда, чтобы сумма ряда стремилась к или к или же вовсе не стремилась ни к какому пределу, конечному или бесконечному.
Составим ряд из положительных элементов ряда и обозначим его , а элементы ряда обозначим . Соответственно, ряд из модулей отрицательных элементов обозначим . Следовательно, ряд можно представить как . Исходя из свойств условно сходящихся рядов , и — расходятся, а исходя из свойств остатка ряда , все остатки и — расходятся в каждом из этих рядов, начиная с любого места, можно набрать столько членов, чтобы их сумма превзошла любое число. Пользуясь этим, произведём перестановку членов ряда . Сначала возьмём столько положительных членов ряда (не меняя их порядок), чтобы их сумма превзошла : . За ними запишем столько отрицательных членов ряда (не меняя их порядок), чтобы общая сумма была меньше : . Этот процесс мысленно продолжаем до бесконечности. Таким образом все члены ряда встретятся в новом ряду. Если всякий раз, выписывая члены и , набирать их не больше, чем требуется для неравенства, то разница между частичной суммой нового ряда и по модулю не превзойдет последнего написанного члена. Поскольку из свойств условно сходящихся рядов и , то новый ряд сходится к . ■