Interested Article - Нулевая матрица

Нулева́я ма́трица — это матрица , размера все элементы которой равны нулю . Она обозначается как или или

Признаки

Нулевая матрица, и только она, имеет ранг 0.

Это означает, что только нулевая матрица обладает свойством давать нулевой столбец при умножении справа на любой вектор-столбец, и аналогично для умножения на вектор-строки слева.

Другим следствием этого факта является нулёвость всех матриц размера m ×0 и 0× n , вследствие того, что ранг матрицы m × n не превосходит min( m , n ).

Свойства

  • Сумма матрицы и нулевой матрицы того же размера равна исходной матрице :
  • Разница матрицы и нулевой матрицы того же размера равна исходной матрице :
  • Произведение матрицы размера на нулевую матрицу размера равно нулевой матрице размера
  • Квадратная нулевая матрица n × n при является вырожденной , и, как следствие, её определитель равен нулю:
    Таким образом, такая матрица не имеет обратной .
Только нулевая матрица является одновременно и симметричной, и кососимметричной.
  • Квадратная нулевая матрица является скалярной матрицей, и, следовательно, перестановочна с любой квадратной матрицей того же размера:
.

Все вышеизложенные свойства нулевой матрицы являются, так или иначе, следствием того обстоятельства, что нулевая матрица является аддитивным нейтральным элементом (в просторечии: нулём) линейного пространства матриц своего размера, а значит она (и только она) принадлежит любому линейному подпространству . Ну заодно и нулём алгебры матриц, если матрица квадратная.

Несмотря на это, нулевая матрица имеет и нетривиальные свойство, касающееся ненулевых делителей . Вообще-то их сколько угодно, хоть справа, хоть слева, но точное определение «скольких угодно» зависит от того, в пространстве матриц какого размера мы будем их искать. Па́ры ненулевых матриц M размера m × l и N размера l × n таких, что существуют тогда и только тогда, когда . Для существования l =0 недостаточно уже по той причине, что среди матриц размером как m ×0, так и 0× n , ненулевых нет вообще (см. ). А для объяснения несуществования делителей с l =1 см. статью тензорное произведение . Таким образом, в алгебре матриц n × n над любым полем имеются делители нуля тогда и только тогда, когда . Что, впрочем, неудивительно, если посмотреть, как устроены такие алгебры при n =1 и n =0.

Примечания

  1. , с. 11.

Литература

  • Мальцев А. И. Основы линейной алгебры. — М. : Наука, 1975. — 400 с.
Источник —

Same as Нулевая матрица