История математики в Армении
- 1 year ago
- 0
- 0
Научные достижения индийской математики широки и многообразны. Уже в древние времена учёные Индии на своём, во многом оригинальном пути развития достигли высокого уровня математических знаний. В I тысячелетии н. э. индийские учёные подняли античную математику на новую, более высокую ступень. Они изобрели привычную нам десятичную позиционную систему записи чисел, предложили символы для 10 цифр (которые, с некоторыми изменениями, используются повсеместно в наши дни), заложили основы десятичной арифметики, комбинаторики , разнообразных численных методов, в том числе тригонометрических расчётов.
Развитие индийской математики началось, вероятно, достаточно давно, но документальные сведения о начальном её периоде практически отсутствуют. Среди наиболее древних из сохранившихся индийских текстов, содержащих математические сведения, выделяется серия религиозно-философских книг Шульба-сутры (дополнение к Ведам ). Эти сутры описывают построение жертвенных алтарей. Самые старые редакции этих книг относятся к VI веку до н. э., позднее (примерно до III века до н. э.) они постоянно дополнялись. Уже в этих древних манускриптах содержатся богатые математические сведения, по своему уровню не уступающие вавилонским :
Классическая задача комбинаторики : «сколько есть способов извлечь m элементов из N возможных» упоминается в сутрах, начиная примерно с IV века до н. э. Индийские математики, видимо, первыми открыли биномиальные коэффициенты и их связь с биномом Ньютона . Во II веке до н. э. индийцы знали, что сумма всех биномиальных коэффициентов степени n равна .
Индийская нумерация (способ записи чисел) изначально была изысканной. В санскрите были средства для именования чисел до . Для цифр сначала использовалась сиро-финикийская система, а с VI века до н. э. — написание « брахми », с отдельными знаками для цифр 1-9. Несколько видоизменившись, эти значки стали современными цифрами, которые мы называем арабскими , а сами арабы — индийскими .
Около 500 г. н. э. неизвестные нам индийские учёные изобрели десятичную позиционную систему записи чисел. В новой системе выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков , или шестидесятеричных , как у вавилонян .
В VII веке сведения об этом замечательном изобретении дошли до христианского епископа Сирии , который писал :
Я не стану касаться науки индийцев… их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счёт производится с помощью девяти знаков.
Очень скоро потребовалось введение нового числа — нуля . Учёные расходятся во мнениях, откуда в Индию пришла эта идея — от греков, из Китая , или индийцы изобрели этот важный символ самостоятельно. Первый код нуля обнаружен в манускрипте Бакхшали 876 г. н. э., он имеет вид привычного нам кружочка.
Дроби в Индии записывались вертикально, как делаем и мы, только вместо черты дроби их заключали в рамку (так же, как в Китае и у поздних греков). Действия с дробями ничем не отличались от современных.
Индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней. Сам наш термин «корень» появился из-за того, что индийское слово « мула » имело два значения: основание и корень (растения); арабские переводчики ошибочно выбрали второе значение, и в таком виде оно попало в латинские переводы. Возможно, аналогичная история произошла со словом « синус ». Для контроля вычислений применялось сравнение по модулю 9.
Первые дошедшие до нас « сиддханты » (научные сочинения) относятся уже к IV—V векам н. э., и в них заметно сильное древнегреческое влияние. Отдельные математические термины — просто кальки с греческого. Предполагается, что часть этих трудов была написана греками-эмигрантами, бежавшими из Александрии и Афин от антиязыческих погромов в Римской империи . Например, известный александрийский астроном Паулос написал «Пулиса-сиддханта».
К V—VI векам относятся труды Ариабхаты , выдающегося индийского математика и астронома. В его труде « Ариабхатиам » встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта . Начиная с Брахмагупты, индийские математики свободно обращаются с отрицательными числами, трактуя их как долг. Предположительно, эта идея пришла из Китая. При решении уравнений, однако, отрицательные результаты неизменно отвергали. Брахмагупта, как и Ариабхата, систематически применял непрерывные дроби , теория которых отсутствовала у греков.
Особенно далеко индийцы продвинулись в алгебре и в численных методах . Их алгебраическая символика богаче, чем у Диофанта , хотя несколько громоздка (засорена словами). Геометрия по каким-то причинам вызывала у индийцев слабый интерес — доказательства теорем состояли из чертежа и слова «смотри». Формулы для площадей и объёмов, а также тригонометрию они, скорее всего, унаследовали от греков.
Ряд открытий был сделан в области решения неопределённых уравнений в натуральных числах. Вершиной стало решение в общем виде уравнения . В 1769 г. индийский метод переоткрыл Лагранж .
В VII—VIII веках индийские математические труды переводятся на арабский. Десятичная система проникает в страны ислама , а через них, со временем — и в Европу.
В XI веке происходит захват и разорение мусульманами Северной Индии ( Махмуд Газневи ). Культурные центры переносятся в Южную Индию. Научная жизнь на длительный период угасает. Из значительных фигур этого периода можно выделить Бхаскару , автора астрономо-математического трактата « Сиддханта-широмани ». Бхаскара дал решение уравнения Пелля и ряда других диофантовых уравнений , продвинул теорию непрерывных дробей и сферическую тригонометрию .
XVI век был отмечен крупными открытиями в теории разложения в ряды, переоткрытыми в Европе 100—200 лет спустя. В том числе — ряды для синуса , косинуса и арксинуса . Поводом к их открытию послужило, видимо, желание найти более точное значение числа .