Вакуумный дирижабль
- 1 year ago
- 0
- 0
Вакуумный насос — устройство, служащее для удаления (откачки) газов или паров до определённого уровня давления (технического вакуума ).
Началом научного этапа в развитии вакуумной техники можно считать 1643 г., когда Торричелли впервые измерил атмосферное давление. Около 1650 года Отто фон Герике изобрел механический поршневой насос с водяным уплотнителем. Изучалось поведение различных систем и живых организмов в вакууме .
Наконец, во второй половине XIX в. человечество шагнуло в технологический этап создания вакуумных приборов и техники. Это было связано с изобретением ртутно-поршневого насоса в 1862 году и потребностью в вакуумировании со стороны нарождающейся электроламповой промышленности . Начинают изобретаться такие вакуумные насосы: вращательный (Геде, 1905), криосорбционный ( Дж. Дьюар , 1906), молекулярный (Геде, 1912), диффузионный (Геде, 1913) ; манометры : компрессионный (Г. Мак-Леод, 1874), тепловой ( М. Пирани , 1909), ионизационный (О. Бакли, 1916).
В СССР становление вакуумной техники началось с организации вакуумной лаборатории на ленинградском заводе «Светлана» . Началось бурное развитие электроники и новых методов физики.
Объёмные насосы осуществляют откачку за счёт периодического изменения объёма рабочей камеры. В основном они используются для получения предварительного разрежения ( форвакуума ). К ним относятся поршневые, жидкостно-кольцевые , ротационные (вращательные). Наибольшее распространение в вакуумной технике получили вращательные насосы.
К высоковакуумным механическим насосам относятся: пароструйные насосы (парортутные и паромасляные), турбомолекулярные насосы. Молекулярные насосы осуществляют откачку за счёт передачи молекулам газа количества движения от твёрдой, жидкой или парообразной быстродвижущейся поверхности. К ним относятся водоструйные, эжекторные , диффузионные молекулярные насосы с одинаковым направлением движения откачивающей поверхности и молекул газа и турбомолекулярные насосы с взаимно перпендикулярным движением твёрдых поверхностей и откачиваемого газа.
Вакуумные насосы классифицируют как по типу вакуума, так и по устройству. Область давлений, с которой имеет дело вакуумная техника , охватывает диапазон от 10 5 до 10 −12 Па. Степень вакуума характеризуется числом Кнудсена , определяемое как отношение средней длины свободного пробега молекул газа к линейному эффективному размеру вакуумного элемента Эффективным размером принимается, например, расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода, расстояние между электродами прибора, размер пор в пористых телах.
Вакуумные насосы по назначению подразделяются на сверхвысоковакуумные, высоковакуумные, средневакуумные и низковакуумные, а в зависимости от принципа действия — на механические и физико-химические. Условно весь диапазон давлений для реальных размеров вакуумных приборов может быть разделён на поддиапазоны следующим образом :
Вакуумные насосы также делят по физическим принципам их работы на газопереносные насосы и газосвязывающие насосы. Газопереносные насосы транспортируют частицы либо через некий рабочий объём (поршневые насосы), либо путём передачи механического импульса частице (за счет столкновения). Некоторые насосы нуждаются в переносимого вещества, другие — в ламинарном . Механические насосы подразделяются на объёмные и молекулярные.
Для получения той или иной степени вакуума требуются соответствующие насосы или их комбинация. Выбор насоса определяется родом и количеством пропускаемых насосом газов и диапазоном рабочих давлений насоса и его параметрами. Не существует такого насоса, с помощью которого можно было бы обеспечить получение вакуума во всем диапазоне давлений с приемлемой эффективностью.