Interested Article - Спин-орбитальное взаимодействие

Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом , обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона , находящегося на одной из орбит в атоме , с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.

Вывод гамильтониана спин-орбитального взаимодействия

Спин-орбитальное взаимодействие является релятивистским эффектом , поэтому для вывода части гамильтониана , отвечающей данному взаимодействию, следует отталкиваться от уравнения Дирака с учтённым в гамильтониане вкладом от внешнего электромагнитного поля с векторным потенциалом A и скалярным потенциалом φ, для чего в уравнении Дирака, согласно лагранжеву формализму , нужно произвести замену

и

.

В итоге уравнение Дирака принимает вид:

,

где

матрицы Паули

Из данного гамильтониана видно, что волновая функция ψ должна быть четырёхкомпонентной, причём известно, что две её компоненты соответствуют решениям с положительной энергией, а две — с отрицательной. Роль решений с отрицательной энергией мала при рассмотрении вопросов, связанных с магнитными явлениями, поскольку дырки в спектре отрицательной энергии соответствуют позитронам , для образования которых нужна энергия порядка , что значительно превышает энергию, связанную с магнитными явлениями. В связи с вышесказанным удобно воспользоваться каноническим , которое разбивает уравнение Дирака на пару двухкомпонентных уравнений. Одно из которых описывает решения с отрицательной энергией, а другое с положительной и имеет гамильтониан следующего вида:

Члены, заключённые в фигурные скобки, характеризуют спин-орбитальное взаимодействие. В частности, если электрическое поле центрально-симметричное, то имеем , и гамильтониан спин-орбитального взаимодействия принимает вид:

где — оператор углового момента импульса электрона.

Данный результат согласуется с классическим выражением, описывающим взаимодействие спина электрона с полем обусловленным орбитальным движением электрона. Поясним это.

Классическое выражение энергии спин-орбитального взаимодействия для атомарного электрона

Пусть электрон движется равномерно и прямолинейно со скоростью v в поле ядра, помещённого в начале системы координат 1 и которое создаёт кулоновское поле . В системе координат 2, связанной с движущимся электроном, наблюдатель будет видеть движущееся ядро, которое создает как электрическое, так и магнитное поле, с напряженностью E' и H' , соответственно. Как следует из теории относительности E' и H' связаны с Е следующими соотношениями:

Где отброшены члены порядка

Тогда уравнение изменения спинового момента количества движения (связанного, согласно гипотезе Уленбека — Гаудсмита, гиромагнитным отношением с магнитным моментом , как ) в системе координат 2 будет иметь вид:

Это уравнение соответствует взаимодействию спина электрона с электромагнитным полем, которое описывается гамильтонианом следующего вида:

Заметим, что вид гамильтониана с точностью до множителя 1/2 совпадает с видом спин-орбитальной части гамильтониана полученного из уравнения Дирака с помощью преобразования Фолди и Ваутхайзена. Отсутствие этого множителя связано с тем, что уравнение изменения магнитного момента электрона будет верно только в том случае, если система 2 не будет вращающейся, в противном случае это уравнение, из-за прецессии Томаса , должно иметь вид

где — томосовская угловая скорость вращения.

Электрон в атоме ускоряется экранированным кулоновским полем поэтому томосовская угловая скорость описывается соотношением

Таким образом гамильтониан спин-орбитального взаимодействия будет иметь вид:

Что в точности совпадает с ранее полученным результатом.

В твёрдом теле

В полупроводниках спин-орбитальное взаимодествие описывается гамильтонианом Рашбы и Дрессельхауза .

Примечания

  1. Ландау Л. Д. , Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М. : Наука , 1988. — 512 с. — (« Теоретическая физика », том II). — ISBN 5-02-014420-7 .
  2. L.L.Foldy, S.A.Wouthuysen. On the Dirac theory of spin 1/2 particles and its non-relativistic limit (англ.) // Phys.Rev. : журнал. — 1950. — Vol. 78 . — P. 29-36 . — doi : .
  3. , с. 22—23.

Литература

  • Степанов Н. Ф. Квантовая механика и квантовая химия. — М. : Мир , 2001. — С. 391—398. — 519 с. — 5000 экз. ISBN 5-03-003414-5 .
  • Борисенко Виктор Евгеньевич, Данилюк Александр Леонидович, Мигас Дмитрий Борисович. Спинтроника : учебное пособие. — 2-е. — М. : «Лаборатория знаний», 2021. — 232 с. — ISBN 978-5-93208-558-5 .
  • Уайт Р. Квантовая теория магнетизма / Пер. с англ. — 2-е изд., испр. и. доп. — М.: Мир , 1985. — 304 с.
  • Бьёркен Дж. Д. , Дрелл С. Д. Релятивистская квантовая теория. Том 2. — ИО НФМИ, 2000. — 296 с.
  • Джексон Дж. Классическая электродинамика. — М.: Мир , 1965. — 703 с.
Источник —

Same as Спин-орбитальное взаимодействие