Ковариантный вектор
- 1 year ago
- 0
- 0
Аксиальный вектор , или псевдовектор , — величина, компоненты которой преобразуются как компоненты обычного (истинного) вектора при поворотах системы координат , но меняющие свой знак противоположно тому, как ведут себя компоненты вектора при любой инверсии (обращении знака) координат, меняющей ориентацию базиса (в трехмерном пространстве с правой на левую или наоборот; таким преобразованием может быть, например, зеркальное отражение, в простейшем случае — зеркальное отражение одной координатной оси). То есть псевдовектор меняет направление на противоположное при сохранении абсолютной величины (домножается на «-1») при любой такой инверсии координатной системы.
Графически изображённый псевдовектор при таком изменении координат меняет направление на противоположное.
Для того чтобы подчеркнуть отличие настоящего вектора, координаты которого всегда преобразуются так же, как координаты вектора перемещения, настоящий вектор называют истинным, или полярным, вектором .
Простейшим примером аксиального вектора в трёхмерном пространстве является векторное произведение двух полярных векторов, например, в механике — момент импульса , и момент силы , в четырёхмерном пространстве — аксиальный ток .
В рамках внешней алгебры псевдовектор представлен (n-1)-вектором n-мерного пространства. Геометрически простой (n-1)-вектор представляет собой ориентированное подпространство, перпендикулярное некоторой оси. Таким образом в трёхмерном пространстве псевдовектором является бивектор , который можно в свою очередь представить как ориентированную плоскость.
При преобразовании координат координаты аксиального вектора получают домножением на дополнительный множитель (-1) по сравнению с преобразованием координат истинных (иначе называемых полярными) векторов, если базис меняет ориентацию (например, если базис подвергают зеркальному отражению). Таким образом, аксиальный вектор, как и псевдоскаляр , — это частные случаи псевдотензора . Графически изображённый псевдовектор при таком изменении координат меняет направление на противоположное.
Обычный путь порождения псевдовекторов это псевдовекторные операции, наиболее обычной, если не единственной из употребительных, в трёхмерном случае является векторное произведение (так как оно в обычной координатной записи включает псевдотензор Леви-Чивиты ) и операции, содержащие векторное произведение (например, ротор и т. п.) или нечётное их количество. Псевдовекторная операция порождает из истинных векторов и скаляров псевдовекторы и псевдоскаляры.
Так, при умножении истинного вектора на истинный вектор — получается в скалярном произведении истинный скаляр, а в векторном произведении — псевдовектор. При умножении истинного вектора на псевдовектор — получается в скалярном произведении псевдоскаляр, а в векторном произведении истинный вектор. При перемножении двух псевдовекторов — получаются соответственно в скалярном произведении истинный скаляр, а в векторном произведении — псевдовектор.
В физических теориях, за исключением таких, в которых присутствует явное и в принципе наблюдаемое нарушение зеркальной симметрии пространства, псевдовекторы могут присутствовать в промежуточных величинах, но в конечных, наблюдаемых — множители (-1) при зеркальных отражениях координат должны уничтожаться, встречаясь в произведениях чётное количество раз (чётное количество псевдовекторных + псевдоскалярных + других псевдотензорных множителей).
|
В статье
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|