Interested Article - Начальные и граничные условия

В теории дифференциальных уравнений , начальные и граничные условия — дополнение к основному дифференциальному уравнению ( обыкновенному или в частных производных ), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.

Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши ). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определённых классов начальных и краевых задач.

Терминология

Иногда к граничным относят и начальные условия в нестационарных задачах, таких как решение гиперболических или параболических уравнений .

Для стационарных задач существует разделение граничных условий на главные и естественные .

Главные условия обычно имеют вид , где — граница области .

Естественные условия содержат также и производную решения по нормали к границе.

Пример

Уравнение описывает движение тела в поле земного тяготения . Ему удовлетворяет любая квадратичная функция вида где — произвольные числа. Для выделения конкретного закона движения необходимо указать начальную координату тела и его скорость, то есть начальные условия .

Корректность постановки граничных условий

Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:

  1. Решение должно существовать в каком-либо классе функций;
  2. Решение должно быть единственным в каком-либо классе функций;
  3. Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т. д.).

Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближённо, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):

Пусть задано два дифференциальных уравнения: с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:

, где , - решения соответствующих уравнений.

Множество функций, для которых выполняются перечисленные требования, называется классом корректности . Некорректную постановку граничных условий хорошо иллюстрирует пример Адамара .

См. также

Литература

  • Владимиров В.С., Жаринов В.В. Уравнения математической физики. — Физматлит, 2004. — ISBN 5-9221-0310-X .
  • Ахтямов А. М. Теория идентификации краевых условий и её приложения. — М. : Физматлит, 2009.
  • Ахтямов А. М. , Садовничий В. А. , Султанаев Я. Т. Обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. — М. : Издательство Московского университета, 2009.
Источник —

Same as Начальные и граничные условия