Детектор гравитационных волн
- 1 year ago
- 0
- 0
Дете́ктор гравитацио́нных волн ( гравитационно-волновой телескоп ) — техническое устройство, предназначенное для регистрации гравитационных волн . Согласно ОТО , гравитационные волны, образующиеся, например, в результате слияния двух чёрных дыр где-то во Вселенной, вызывают чрезвычайно слабое периодическое изменение расстояний между пробными частицами вследствие колебаний самого пространства-времени. Эти колебания пробных тел и регистрирует детектор. Кроме того, такие детекторы способны измерять гравитационные возмущения геофизической природы . Так, например, на интерферометрах LIGO и VIRGO были зарегистрированы модуляции с сидерической периодичностью .
Наиболее распространены два типа детекторов гравитационных волн. Один из типов, впервые реализованный Джозефом Вебером ( Мэрилендский университет ) в 1967 году, представляет собой гравитационную антенну — как правило, это металлическая массивная болванка, охлаждённая до низкой температуры. Размеры детектора при падении на него гравитационной волны изменяются, и если частота волны совпадает с резонансной частотой антенны, амплитуда колебаний антенны может стать настолько большой, что колебания можно детектировать. В пионерском эксперименте Вебера антенна представляла собой алюминиевый цилиндр длиной 2 м и диаметром 1 м, подвешенный на стальных проволочках; резонансная частота антенны составляла 1660 Гц, амплитудная чувствительность пьезодатчиков — 10 −16 м. Вебер использовал два детектора, работавших на совпадения, и сообщил об обнаружении сигнала, источником которого с наибольшей вероятностью был центр Галактики. Однако независимые эксперименты не подтвердили наблюдений Вебера. Из действующих в настоящее время детекторов по такому принципу работает сферическая антенна MiniGRAIL ( Лейденский университет , Голландия), а также антенны ALLEGRO , AURIGA , EXPLORER и NAUTILUS .
В другом типе экспериментов по детектированию гравитационных волн измеряется изменение расстояния между двумя пробными массами с помощью лазерного интерферометра Майкельсона . Использовать интерферометр Майкельсона для непосредственного обнаружения гравитационных волн впервые предложили в 1962 году советские физики М. Е. Герценштейн и В. И. Пустовойт , но эта работа осталась незамеченной, а вторично эта идея была выдвинута американскими физиками в начале 1970-х годов.
Устройство интерферометрического детектора следующее: в двух длинных (длиной в несколько сот метров или даже километров) перпендикулярных друг другу вакуумных камерах подвешиваются зеркала. Когерентный свет, например лазерный луч, расщепляется, идёт по обеим камерам, отражается от зеркал, возвращается обратно и вновь соединяется. В «спокойном» состоянии длины подобраны так, что эти два луча после воссоединения в полупрозрачном зеркале гасят друг друга (деструктивно интерферируют), и освещённость фотодетектора оказывается нулевой. Но смещение одного из зеркал на микроскопическое расстояние (~ 10 −16 см , что на 11 порядков меньше длины световой волны и составляет тысячные доли размера атомного ядра) приводит к тому, что компенсация двух лучей нарушается и фотодетектор улавливает свет.
В настоящее время гравитационные телескопы такого типа работают или находятся в стадии возведения в рамках американо-австралийского проекта LIGO (наиболее чувствительный), немецко-английского GEO600 , франко-итальянского VIRGO и японского KAGRA (LCGT):
Проект | Расположение телескопа | Длина плеча |
---|---|---|
KAGRA | Токио , Япония | 3 км |
GEO600 | Ганновер , Германия | 0,6 км |
VIRGO | Пиза , Италия | 3 км |
LIGO | Хэнфорд, шт. Вашингтон , США | 4 км |
Ливингстон , шт. Луизиана , США | 4 км |
Данные измерений детекторов LIGO и GEO600 обрабатываются с помощью проекта Einstein@Home (распределённые вычисления на тысячах персональных компьютеров).
Описанные выше типы детекторов чувствительны к низкочастотным гравитационным волнам (до 10 кГц). Ещё более низкочастотный сигнал (10 −2 −10 −3 Гц), соответствующий периодическим источникам гравитационных волн типа тесных двойных, возможно, был зарегистрирован с помощью метода, основанного на эффекте оптико-метрического параметрического резонанса . В эксперименте используются наблюдения космических радиоисточников ( мазеров ) с помощью обычного радиотелескопа . Разрабатываются и высокочастотные варианты детекторов гравитационных волн, например, основанные на взаимном сдвиге частот двух разнесённых осцилляторов или на повороте плоскости поляризации микроволнового пучка, циркулирующего по петлевому волноводу .
Выдвинута гипотеза о возможности процесса детектирования высокочастотных гравитационных волн конденсированной диэлектрической средой путем преобразования гравитационного излучения в электромагнитное
Выдвинута гипотеза о возможности детектирования низкочастотного гравитационного излучения путём использования в качестве гравитационных антенн блоков земной коры размерами 5-7*10 6 см.