Пламя Парижа
- 1 year ago
- 0
- 0
Пла́мя — раскаленная газообразная среда, образующаяся при горении и электроразрядах , состоящая в значительной степени из частично ионизированных частиц, в которой происходят химические взаимодействия и физико-химические превращения составных частиц среды (в т.ч. горючего, окислителя, примесных частиц, продуктов их взаимодействия). Сопровождается интенсивным излучением (в УФ, ИК, видимой части спектра - «свечением») и выделением тепла .
В русском языке нет четкого смыслового разделения слов пламя и огонь , однако слово «огонь» традиционно связано с описанием процессов горения , тогда как пламя имеет более общее употребление, в том числе для процессов, не связанных с горением: молнией , электродугой, свечением вакуумных ламп и так далее.
Иногда в научной литературе пламя относят к «холодной/низкотемпературной плазме», поскольку по существу оно представляет собой газ, состоящий из термически ионизированных частиц с небольшой величиной заряда (как правило, не более ±2-3), тогда как высокотемпературной плазмой называют состояние вещества, при котором ядра атомов и их электронные оболочки сосуществуют раздельно.
Среда пламени содержит заряженные частицы ( ионы , радикалы ), что обусловливает наличие электропроводности пламени и его взаимодействие с электромагнитными полями. На этом принципе построены приборы, способные с помощью электромагнитного излучения приглушить пламя, оторвать от горючих материалов или изменить его форму .
Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN ±n , красно-оранжевая — излучением частиц С 2 ±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CH x ±n , H 2 O ±n , HO ±n , CO 2 ±n , CO ±n ) и основных газов (N 2 , O 2 , Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).
Наиболее высокие известные температуры горения: дицианоацетилен C 4 N 2 5'260 К (4'990 °C) в кислороде и до 6'000 К (5'730 °C) в озоне ; дициан (CN) 2 4'525 °C в кислороде .
Так как вода обладает очень большой теплоёмкостью , отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.
Пламя классифицируют по:
Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):
Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.
Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей — от 0,03 до 15 м/с.
Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении — до 100 м/с; при взрывном горении — от 300 до 1000 м/с; при детонационном горении — свыше 1000 м/с.
Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются .
Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.
Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO 4 . С помощью платиновой петли забирают BaSO 4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным .
Цвет пламени зависит от нескольких факторов. Наиболее важны: температура , наличие в пламени микрочастиц и ионов , определяющих эмиссионный спектр .
Пламя (окислительное и восстановительное) используется в аналитической химии , в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки .
В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите Земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры , поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.
В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.
Тидеман Б. Г., Сциборский Д. Б. Химия горения. — Л. , 1935.
Для улучшения этой статьи
желательно
:
|