Дымный порох
- 1 year ago
- 0
- 0
По́рох — многокомпонентная твёрдая «взрывчатая» ( бризантным веществом не являющаяся) смесь, способная к закономерному горению параллельными слоями, без доступа кислорода извне, с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов , движения ракет и в других целях .
Порох относят к классу метательных взрывчатых веществ .
Первым представителем взрывчатых веществ был дымный порох — механическая смесь селитры , угля и серы , обычно в соотношении 5:3:2 . Существует устойчивое мнение, что подобные составы появились ещё в древности и применялись главным образом в качестве зажигательных и разрушительных средств.
Существуют надёжные многочисленные свидетельства, что порох был изобретён в Китае . К середине первого века нашей эры селитра была известна в Китае и есть убедительные доказательства использования селитры и серы в различных комбинациях в основном для приготовления лекарств . Китайский алхимический текст Тао Хунцзина "Бэньцао цзин цзичжу " («Фармакопея с подборкой комментариев», кит. трад. 本草經集注 ) , датированный 492 годом, описывает практический и надёжный способ отличить калийную селитру от других неорганических солей, служащий алхимикам для оценки и сравнения методов очистки — при сжигании калийной селитры образуется фиолетовое пламя. Древние арабские и латинские способы очистки селитры опубликованы после 1200 года . Первое упоминание о напоминающей порох смеси появилось в Taishang Shengzu Danjing Mijue по Qing Xuzi (около 808 года) — описывается процесс смешивания шести частей серы , шести частей селитры на одну часть кирказона (травы, которая обеспечивала смесь углеродом ) . Первым описанием зажигательных свойств таких смесей является Zhenyuan miaodao yaolüe — даосский текст предварительно датируемый серединой IX века нашей эры : «Некоторые нагревали вместе серу, реальгар и селитру с мёдом — в результате возникали дым и пламя , так что их руки и лица были сожжены, и даже весь дом, где они работали, сгорел» . Китайское слово « порох » ( кит. трад. 火藥, кит. упр. 火药, пиньинь huǒyào, буквально «Огонь медицины» ) вошло в употребление через несколько веков после открытия смеси . Таким образом, в IX веке даосские монахи и алхимики в поисках эликсира бессмертия по случайности наткнулись на порох . Вскоре китайцы применили порох для развития оружия: в последующие века они производили различные виды порохового оружия, включая огнеметы , ракеты , бомбы , примитивные гранаты и мины , прежде чем было изобретено огнестрельное оружие, использующее энергию пороха собственно для метания снарядов .
Уцзин цзунъяо ( кит. трад. 武經總要 , упр. 武经总要 , пиньинь wǔ jīng zǒng yào , буквально: « собрание наиболее важных военных методов ») — китайский военный трактат, созданный в 1044 году при династии Северная Сун , составленный известными учёными Цзэн Гунлян, Дин Ду и Ян Вэйдэ, труд является первым в мире манускриптом, в котором приведены рецепты пороха, даёт описание различных смесей, в состав которых включены продукты нефтехимии, а также чеснок и мёд . Среди прочего упоминаются способы замедления горения пороха для создания фейерверков и ракет — если смесь не содержит достаточного для создания взрыва количества селитры (максимально количество селитры уменьшается на 50 %), то она просто горит . Вместе с тем, Собрание наиболее важных военных методов написано чиновником во времена династии Сун и нет достаточных свидетельств того, что он имел непосредственное отношение к военным действиям. Также нет никаких упоминаний применения (использования) пороха в летописях, описывающих войны Китая против тангутов в XI веке. Впервые опыт применения « Огненного копья » упоминается при описании осады Дэаня в 1132 году .
На сегодняшний день принят основной научный консенсус о том, что порох был изобретён в Китае и затем распространился по Ближнему Востоку , а позже попал в Европу . Возможно, это было сделано в IX веке, когда алхимики искали эликсир бессмертия. Его появление привело к изобретению фейерверков и ранних образцов огнестрельного оружия . Распространение пороха в Азии из Китая в значительной степени приписывается монголам. Гипотетически, порох попал в Европу через несколько веков . Однако существуют споры о том, насколько китайский опыт применения пороха в боевых действиях повлиял на поздние достижения на Ближнем Востоке и в странах Европы .
Первой в истории научной работой, подробно раскрывшей процесс очищения калиевой селитры ( нитрата калия ) и описавшей способы приготовления чёрного пороха в правильном количественном соотношении для получения взрыва, была книга ученого мамлюкского султаната . Работы по синтезу взрывоопасного пороха Хасаном аль Раммахом дали толчок к развитию пушек и ракет. Это позволило мамлюкам Египта стать одними из первых, кто стал применять пушки в военном деле регулярно .
Изготовление калиевой селитры требует разработанных технологических приёмов, которые появились лишь с развитием химии в XV—XVI веках и получением Глаубером азотной кислоты в 1625 году. Изготовление углеродных материалов с высокоразвитой удельной поверхностью типа древесных углей также требует развитой технологии, появившейся лишь с развитием металлургии железа . Наиболее вероятным является использование различных природных селитросодержащих смесей с органикой, обладающих свойствами, присущими пиротехническим составам. Одним из изобретателей пороха принято считать монаха Бертольда Шварца .
В течение длительного времени интенсивно разрабатывались богатейшие залежи натриевой селитры в Чили и калийной селитры в Индии и других странах. Но с давних пор селитру для изготовления пороха получали также искусственно — кустарным способом в так называемых селитряницах. Это были кучи, сложенные из растительных и животных отбросов, перемешанных со строительным мусором, известняком , мергелем . Образовавшийся при гниении аммиак подвергался нитрификации и превращался вначале в азотистую , а затем в азотную кислоту . Последняя, взаимодействуя с известняком, давала Ca(NO 3 ) 2 , который выщелачивался водой. Добавка древесной золы (состоящей в основном из поташа ) приводила к осаждению CaCO 3 и получению раствора нитрата калия .
Метательное свойство дымного пороха было открыто значительно позже и послужило толчком к развитию огнестрельного оружия . В Европе (в том числе и на Руси) известен с середины XIV века; до середины XIX века оставался единственным и до конца XIX века — метательным средством.
С изобретением нитроцеллюлозных порохов, а затем и индивидуальных мощных взрывчатых веществ дымный порох в значительной мере утратил своё значение.
Впервые пироксилиновый порох был получен во Франции П. Вьелем в 1884 , баллиститный порох — в Швеции Альфредом Нобелем в 1888 , кордитный порох — в Великобритании в конце XIX века . Примерно в то же время (1887—1891) в России Дмитрий Менделеев разработал пироколлодийный порох , а группа инженеров Охтинского порохового завода — пироксилиновый порох .
В 30-х годах XX века в СССР впервые были созданы заряды из баллиститного пороха для реактивных снарядов, успешно применявшихся войсками в период Великой Отечественной войны ( реактивные системы залпового огня ). Смесевые пороха для ракетных двигателей были разработаны в конце 1940-х годов.
Дальнейшее совершенствование порохов ведётся в направлении создания новых рецептур, порохов специального назначения и улучшения их основных характеристик.
Различают два вида пороха: смесевые (в том числе самый распространенный — дымный , или чёрный порох ) и нитроцеллюлозные (т. н. бездымные). Порох, применяемый в ракетных двигателях, называют твёрдым ракетным топливом . Основу нитроцеллюлозных порохов составляют нитроцеллюлоза и пластификатор. Помимо основных компонентов, эти пороха содержат различные добавки.
Порох является взрывчатым веществом метательного действия. При длительном хранении больше установленного для данного пороха срока или при хранении в ненадлежащих условиях происходит химическое разложение компонентов пороха и изменение его эксплуатационных характеристик (режима горения, механических характеристик ракетных шашек и др.). Эксплуатация и даже хранение таких порохов крайне опасны и могут привести к взрыву.
Группа | Название | Состав |
---|---|---|
Смесевые пороха | Дымный (чёрный) порох | KNO 3 , S, C |
Алюминиевый порох | KNO 3 , S, Al | |
Нитроцеллюлозные пороха | Пироксилиновые | 91-96 % пироксилина , 1,2-5 % летучих веществ ( спирт , эфир и вода ), 1,0-1,5 % стабилизатора (дифениламин, централит) |
Баллиститные | нитроцеллюлоза и неудаляемый пластификатор (нитроглицерин, дигликоль и т. д.) | |
Кордитные | высокоазотный пироксилин, удаляемый (спирто-эфирная смесь, ацетон ) и неудаляемый ( нитроглицерин ) пластификатор | |
Твёрдое ракетное топливо | 50-60 % окислителя, как правило перхлората аммония , 10-20 % пластифицированного полимерного связующего, 10-20 % мелкодисперсного порошка алюминия и др. |
Современные дымные , или чёрные пороха производятся по строгим нормативам и точной технологии. Все марки чёрного пороха делятся на зернистые и пороховую пудру (т. н. пороховая мякоть , ПМ). Основными компонентами дымного пороха являются калия нитрат , сера и древесный уголь ; нитрат калия является окислителем (способствует быстрому горению), древесный уголь горючим (окисляемым окислителем), а сера — добавочным компонентом (так же, как и уголь, являясь топливом в реакции, она из-за невысокой температуры воспламенения улучшает поджигаемость). Во многих странах пропорции, установленные нормативами, несколько отличаются (но не сильно).
Зернистые пороха изготовляются в виде зёрен неправильной формы в пять стадий (не считая сушки и дозирования): помол компонентов в пудру, их смешение, прессование в диски, дробление на гранулы и полировка.
Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.
Сорта дымных порохов (% состав KNO 3 , S, C.):
Дымный порох легко воспламеняется под действием пламени и искры ( температура вспышки 300 °C), поэтому в обращении опасен. Хранится в герметической упаковке отдельно от других видов пороха. Гигроскопичен , при содержании влаги более 2 % плохо воспламеняется. Процесс производства дымных порохов предусматривает смешение тонкоизмельчённых компонентов и обработку полученной пороховой мякоти до получения зёрен заданных размеров. Коррозия стволов при использовании дымного пороха намного сильнее, чем от нитроцеллюлозных порохов, поскольку побочным продуктом сгорания являются серная и сернистая кислоты. В настоящее время дымный порох используется в фейерверках . Примерно до конца XIX века применялся в огнестрельном оружии и взрывных боеприпасах.
Реакция окисления:
Алюминиевый порох применяется в пиротехнике и состоит из смешанных в определённой пропорции сильно измельченных нитрата калия /натрия (окислитель), алюминиевой пудры (горючее) и серы . Этот порох отличается большей температурой, скоростью горения и большим выделением света. Применяется в разрывных элементах и флеш-составах (производящих вспышку).
Пропорции (селитра: алюминий: сера):
Состав практически не отсыревает, не комкуется, но сильно мажется.
В отличие от дымного (чёрного) пороха на основе угля, широкое распространение получили нитроцеллюлозные бездымные пороха, главным преимуществом которых является больший КПД и отсутствие дыма после выстрела, демаскирующего и мешающего обзору.
По составу и типу пластификатора (растворителя) нитроцеллюлозные пороха делятся на: пироксилиновые, баллиститные и кордитные.
Они применяются для изготовления современных взрывчатых веществ, порохов, пиротехнических изделий и для подрыва (инициирования) других взрывчатых веществ, то есть в качестве детонаторов. Таким образом, в современных образцах вооружения в качестве топлива в основном используют бездымный порох (порошок нитроцеллюлозы, NC).
В состав пироксилиновых порохов обычно входит 91-96 % пироксилина , 1,2-5 % летучих веществ ( спирт , эфир и вода ), 1,0-1,5 % стабилизатора (дифениламин, централит) для увеличения стойкости при хранении, 2-6 % флегматизатора для замедления горения наружных слоев пороховых зёрен и 0,2-0,3 % графита в качестве добавок. Такие пороха изготовляются в виде пластинок, лент, колец, трубок и зёрен с одним или несколькими каналами; применяются в стрелковом оружии и в артиллерии . Основными недостатками пироксилиновых порохов являются: невысокая энергия газообразных продуктов сгорания (относительно, например, баллиститных порохов), технологическая сложность получения зарядов большого диаметра для ракетных двигателей. Основное время технологического цикла затрачивается на удаление из порохового полуфабриката летучих растворителей. В зависимости от назначения, помимо обычных пироксилиновых, имеются специальные пороха: пламегасящие , малогигроскопичные, малоградиентные (с малой зависимостью скорости горения от температуры заряда); малоэрозионные (с пониженным разгарно-эрозионным воздействием на канал ствола); флегматизированные (с пониженной скоростью горения поверхностных слоев); пористые и другие. Процесс производства пироксилиновых порохов предусматривает растворение (пластификацию) пироксилина, прессование полученной пороховой массы и резку для придания пороховым элементам определённой формы и размеров, удаление растворителя и состоит из ряда последовательных операций.
Основу баллиститных порохов составляют нитроцеллюлоза и неудаляемый пластификатор, поэтому их иногда называют двухосновными. В зависимости от применяемого пластификатора они называются нитроглицериновыми, дигликолевыми и так далее. Обычный состав баллиститных порохов: 40-60 % коллоксилина (нитроцеллюлоза с содержанием азота менее 12,2 %) и 30-55 % нитроглицерина (нитроглицериновые пороха) или (дигликолевые пороха) либо их смеси. Кроме того, в состав этих порохов входят ароматические нитросоединения (например, ) для регулирования температуры горения, стабилизаторы ( дифениламин , централит), а также вазелиновое масло , камфора и другие добавки. Также в баллиститные пороха могут вводить мелкодисперсный металл ( сплав алюминия с магнием ) для повышения температуры и энергии продуктов сгорания, такие пороха называют металлизированными. Порох изготовляются в виде трубок, шашек, пластин, колец и лент. По применению баллиститные пороха делят на ракетные (для зарядов к ракетным двигателям и газогенераторам), артиллерийские (для метательных зарядов к артиллерийским орудиям) и миномётные (для метательных зарядов к миномётам ). По сравнению с пироксилиновыми баллиститные пороха отличаются меньшей гигроскопичностью, большей быстротой изготовления, возможностью получения крупных зарядов (до 0,8 метра в диаметре ), высокой механической прочностью и гибкостью за счёт использования пластификатора. Недостатком баллиститных порохов по сравнению с пироксилиновыми является большая опасность в производстве, обусловленная наличием в их составе мощного взрывчатого вещества — нитроглицерина , очень чувствительного к внешним воздействиям, а также невозможность получить заряды диаметром больше 0,8 м, в отличие от смесевых порохов на основе синтетических полимеров . Технологический процесс производства баллиститных порохов предусматривает смешение компонентов в тёплой воде в целях их равномерного распределения, отжимку воды и многократное вальцевание на горячих вальцах. При этом удаляется вода и происходит пластификация нитрата целлюлозы , который приобретает вид роговидного полотна. Далее порох выпрессовывают через матрицы или прокатывают в тонкие листы и режут.
Кордитные пороха содержат высокоазотный пироксилин, удаляемый (спирто-эфирная смесь, ацетон ) и неудаляемый ( нитроглицерин ) пластификатор. Это приближает технологию производства данных порохов к производству пироксилиновых порохов.
Преимущество кордитов — большая мощность, однако они вызывают повышенный разгар стволов из-за более высокой температуры продуктов сгорания.
Смесевый порох на основе синтетических полимеров (твёрдое ракетное топливо) содержит примерно 50-60 % окислителя, как правило перхлората аммония , 10-20 % пластифицированного полимерного связующего, 10-20 % мелкодисперсного порошка алюминия и другие добавки. Это направление пороходелания впервые появилось в Германии в 30-40-е годы XX века, после окончания войны активной разработкой таких топлив занялись в США, а в начале 50-х годов — и в СССР. Главными преимуществами перед баллиститным порохом, привлёкшие к ним большое внимание, явились: более высокая удельная тяга ракетных двигателей на таком топливе, возможность создавать заряды любой формы и размеров, высокие деформационные и механические свойства композиций, возможность регулировать скорость горения в широких пределах. Эти достоинства позволили создавать стратегические ракеты с дальностью действия более 10 000 км. На баллиститных порохах С. П. Королёву вместе с пороходелами удалось создать ракету с предельной дальностью действия 2 000 км. Но у смесевых твёрдых топлив есть значительные недостатки по сравнению с нитроцелюлозными порохами: очень высокая стоимость их изготовления, длительность цикла производства зарядов (до нескольких месяцев), сложность утилизации, выделение соляной кислоты в атмосферу при горении перхлората аммония .
Горение параллельными слоями, с выделением газообразных продуктов, но не переходящее во взрыв , обусловливается передачей тепла от слоя к слою и достигается изготовлением достаточно монолитных пороховых элементов, лишённых трещин. Скорость горения порохов зависит от давления по степенному закону , увеличиваясь с ростом давления, поэтому не стоит ориентироваться на скорость сгорания пороха при атмосферном давлении, оценивая его характеристики. Регулирование скорости горения порохов — очень сложная задача и решается использованием в составе порохов различных катализаторов горения. Горение параллельными слоями позволяет регулировать скорость газообразования. Газообразование пороха зависит от величины поверхности заряда и скорости его горения.
Величина поверхности пороховых элементов определяется их формой, геометрическими размерами и может в процессе горения увеличиваться или уменьшаться. Такое горение называется соответственно прогрессивным или дигрессивным . Для получения постоянной скорости газообразования или её изменения по определённому закону отдельные участки зарядов (например ракетных) покрывают слоем негорючих материалов ( бронировкой ). Скорость горения порохов зависит от их состава, начальной температуры и давления.
Основными характеристиками пороха являются: теплота горения Q — количество тепла, выделяемое при полном сгорании 1 килограмма пороха; объём газообразных продуктов V, выделяемых при сгорании 1 килограмма пороха (определяется после приведения газов к нормальным условиям ); температура газов Т, определяемая при сгорании пороха в условиях постоянного объёма и отсутствия тепловых потерь; плотность пороха ρ; сила пороха f — работа , которую мог бы совершить 1 килограмм пороховых газов, расширяясь при нагревании на Т градусов при нормальном атмосферном давлении.
Тип пороха |
Количество тепла,
Q, ккал/кг |
Объём газов
V, л/кг |
Температура газов,
T, K |
---|---|---|---|
Пироксилиновый | 700 | 900 | ~2000 |
Баллиститные: | 900 | 1000 | 1700—4000 |
ТРТ | 1200 | 860 | 1500—3500 |
Артиллерийский | 800 | 750 | ~2500 |
Кордитный | 850 | 990 | ~2000 |
Дымный | 700 | 300 | ~2200 |
|
Этот раздел
не завершён
.
|
Кроме развлекательных целей ( фейерверки ) порох используют также в технических целях: в (строительно-монтажные пистолеты, пробойники и др.), в пиротехнических изделиях ( пироболты , пиропатроны и т. д.). Также порох продолжает использоваться в качестве взрывчатого вещества в тех случаях, когда требуется небольшая мощность ВВ, например, при извлечении блоков гранита в карьерах.