Компьютерная томография
- 1 year ago
- 0
- 0
Томогра́фия ( др.-греч. τομή — сечение и γράφω — пишу) — получение послойного изображения внутренней структуры объекта.
Анатомическая, или разрушающая томография (биотомия) основана на физическом выполнении срезов исследуемого организма с их последующей фиксацией с помощью химических веществ. Классическими примерами анатомической томографии являются пироговские срезы и изображения гистологических препаратов . Для сохранения формы организма при выполнении срезов организм фиксируется, например, путём замораживания .
Реконструктивная, или неразрушающая томография — получение тем или иным способом информации о распределении интересующего параметра в объекте большей размерности по его проекциям меньшей размерности без разрушения объекта; антоним анатомической томографии. В объём понятия входят аналоговая реконструктивная томография и вычислительная (компьютерная) томография .
Аналоговая реконструктивная томография — реконструктивная томография, использующая для восстановления распределения параметра объекта не цифровые, а аналоговые вычислительные устройства (например, оптические).
Метод был предложен для рентгенологического исследования французским врачом Бокажем и реализован в виде аппарата (названного «томографом») итальянским инженером Валлебоной (и, примерно в то же время, инженерами из других стран) в 1920-х — начале 1930-х годах, и был основан на перемещении двух из трёх компонентов рентгенографии ( рентгеновская трубка , рентгеновская плёнка , объект исследования ). Томограф позволял получить один снимок — изображение слоя, лежащего на выбранной глубине исследуемого объекта. Наибольшее распространение получил метод съёмки, при котором исследуемый объект оставался неподвижным, а рентгеновская трубка и кассета с плёнкой согласованно перемещались в противоположных направлениях. При синхронном движении трубки и кассеты четким на плёнке получается только необходимый слой, потому что только его вклад в общую тень остаётся неподвижным относительно плёнки, всё остальное смазывается, почти не мешая проводить анализ полученного изображения. Метод получил название классическая, или линейная томография . В настоящее время доля последнего метода в исследованиях в мире уменьшается в связи со своей относительно малой информативностью и высокой лучевой нагрузкой.
В медицине при диагностике заболеваний зубочелюстной системы широко используется панорамная томография . За счёт движения излучателя и кассеты с рентгеновской плёнкой по специальным траекториям выделяется изображение в форме цилиндрической поверхности. Это позволяет получить снимок с изображением всех зубов пациента.
Вычислительная томография — область математики , занимающаяся разработкой математических методов и алгоритмов реконструкции внутренней структуры объекта по проекционным данным — цифровым снимкам объекта, сделанным посредством многократного просвечивания этого объекта в различных пересекающихся направлениях. Внутренняя структура, как правило, представляется в воксельной форме . Получение массива вокселей по массиву проекционных снимков называется прямой томографической задачей . К области вычислительной томографии также относится и решение обратной томографической задачи — формирование произвольного проекционного вида на основании известной внутренней структуры.
Вычислительная томография является теоретической основой компьютерной томографии — метода получения послойных изображений объекта в трёх плоскостях с возможностью их трёхмерной реконструкции. Чаще всего под компьютерной томографией подразумевается рентгеновская компьютерная томография (КТ).
В отличие от рентгеновской КТ, магнитно-резонансная томография (МРТ) использует электромагнитные волны низких энергий и при частом использовании не представляет опасности для пациента. МРТ и КТ имеют различия и применяются в разных случаях, они не взаимозаменяемы .
|
В разделе
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|
|
В разделе
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|
С точки зрения взаиморасположения источника зондирующего излучения, объекта и детектора томографические методы могут быть разделены на следующие группы:
По сфере применения выделяют:
Известны несколько тысяч алгоритмов, применяемых для задач вычислительной (реконструктивной) томографии. Их можно объединить в несколько больших основных групп.
Со времён Абеля, Радона, Вайнштейна применялись алгоритмы аналитического обратного преобразования. Математической особенностью этих задач является то, что они принадлежат к классу некорректно по Адамару поставленных задач, как правило, родственных интегральным уравнениям Фредгольма. Эффективным средством их решения при конечном числе проекций является метод регуляризации академика А. Н. Тихонова , развитый впоследствии Филлипсом, Арсениным, Ягломом, Тананой и многими др.
Для осесимметричных систем применяют непосредственно обратное преобразование Абеля. Его дискретная версия впервые была применена Ван-Циттертом для задачи разрешения сверх предела Рэлея.
Для двухмерных систем, описываемых двумя разделяющимися переменными, применяют элементарное преобразование Агравала и Содха. Для систем с известной группой симметрии теорема Вайнштейна указывает наименьшее число проекций, достаточных для точной реконструкции системы.
С 1940-х годов (Тихонов и др.) томографические задачи для 2- и 3-мерных объектов поддаются решению численными методами. Численная дискретная модель системы интегральных уравнений сводится, в конечном итоге, как правило, к особенной (недоопределённой либо, напротив, переопределённой и несовместной) системе линейных уравнений большого размера, причём с размерностью от 3- и 4- (для двумерной томографии) до 5- и 6-мерной (для трёхмерной томографии). В экспериментальной ядерной физике и физике пучков заряженных частиц известна четырёхмерная томография (Sandia National Laboratories, Brookhaven National Laboratory, CERN , Исследовательский центр им. М. В. Келдыша, МФТИ и др.).
Таким образом, решение таких систем классическими «точными» методами (Гаусса-Жордана и т. п.) нереально вследствие кубически (по числу элементов объекта =N M , где N — характерный линейный размер объекта, M — размерность) больших вычислительных затрат (что доказано ). Например, для двухмерных задач порядка 100×100 потребуется порядка 1 трлн операций с накоплением погрешностей округления, а для 3-мерных 100×100×100 — порядка 10 18 операций, что соответствует времени порядка 1 часа счёта на суперкомпьютерах производительностью десятки петафлоп.
Таким образом, класс 1 вычислительно неудовлетворителен. Для их решения применяют три иных класса алгоритмов:
Первые технические и биологические вычислительные интроскопы-томографы в СССР (1940—1950-е годы) и первые медицинские вычислительные томографы в США (1970-е годы) фактически использовали ряд версий метода польского математика Качмажа (1937), в том числе советского математика И. А. Бочека (1953, МФТИ). Так, награждённые Нобелевской премией Кормак и Хаунсфилд использованный ими алгоритм Качмажа (обеспечивающий достижение точки наименьших квадратов) называли ART (1973); алгоритм советского математика Тараско (обеспечивающий достижение точки максимума правдоподобия, 1960-е годы, ФЭИ, Обнинск) они назвали MART; также они использовали алгоритм японского математика Куино Танабе (1972), являющийся релаксационной и сверхрелаксационной версией алгоритма Качмажа. Часто используется алгоритм Фридена (обеспечивающий достижение точки максимума энтропии). Стохастические методы перебора уравнений в проекциях (первым из таких была стохастическая версия алгоритма И. А. Бочека, опубликованная в 1971 году) позволяют избежать регулярных артефактов и значительно улучшить качество изображения.
Если для схем сканирования «тонкими лучами» система уравнений сравнительно хорошо обусловлена (следовательно, результат реконструкции мало чувствителен к неизбежным погрешностям измерений проекций), то для сканирования «толстыми лучами» (что характерно для задач ЯМР-томографии, УЗИ, ПЭТ, СВЧ-интроскопии Ощепкова, электротоковой томографии, система уравнений оказывается очень плохо обусловленной. Это приводит к резкому замедлению приближения итераций вышеупомянутых проекционных методов к решению. Для решения таких систем используют методы А. В. Горшкова (МФТИ) и (ЮУрГУ), отличающиеся нечувствительностью к плохой обусловленности решаемых систем уравнений, а также, за счёт необходимого стохастического перебора уравнений в них, отсутствием регулярных артефактов, и, наконец, скоростью сходимости (в практических задачах) на 2—3 порядка большей, чем указанные ранее.
Для нелинейных уравнений и томографии объектов большой размерности (трёхмерной в медицине, науке и технике, 4-, 5-, 6-мерной в ядерной физике и физике плазмы и пучков заряженных частиц, в ускорительной технике) эффективным методом решения являются варианты метода Монте-Карло в метрических пространствах большой размерности.
Алгоритм советского и российского математика А. А. Абрамова одновременных сжимающих итерации к решению и итерации к ортогонализации обеспечивает гарантию устойчивой сходимости к решению и заодно весьма точную оценку погрешности и скорости реконструкции. Укажем, что в плохо обусловленных системах в качестве его элементарных итераций рекомендуются не итерации первого порядка (Качмажа-Бочека, Тараско, Фридена и т. п.), а второго порядка (Горшкова, Елсакова и др.), или даже (в случае необходимости, пока не встреченной в практических задачах) итерации 3-го или большего порядков.
Заметим, что не следует без необходимости использовать итерации слишком высоких порядков, так как вычислительные затраты на них при неограниченном увеличении порядка итерации стремятся к кубическим (по N**M) (как у прямого обращения Гаусса-Жордана).
Для решения вычислительных задач синфазных УЗ-, СВЧ-, СБММ- и электропотенциальной томографии используют алгоритм академика Лаврентьева.
Для улучшения этой статьи
желательно
:
|