Гидравлический диаметр
- 1 year ago
- 0
- 0
Гидравли́ческий при́вод ( гидропри́вод ) — совокупность деталей и устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии (энергии потока жидкости).
Гидропривод вместе со вспомогательными механизмами (обычно — с механической передачей ) образует гидравлическую передачу .
Основная функция гидропривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Другая функция гидропривода — это передача мощности от приводного двигателя к рабочим органам машины (например, в одноковшовом экскаваторе — передача мощности от двигателя внутреннего сгорания к ковшу или к гидроцилиндрам стрелы, к гидродвигателям поворота платформы и т. д.).
В общих чертах, передача мощности в гидроприводе происходит следующим образом:
Гидроприводы могут быть двух типов: гидродинамические и объёмные.
Объёмный гидропривод — это гидропривод, в котором используются объёмные гидромашины ( насосы и гидродвигатели ). Объёмной называется гидромашина , рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. К объёмным машинам относят, например, поршневые насосы , аксиально-поршневые , радиально-поршневые , шестерённые гидромашины и др.
Одна из особенностей, отличающая объёмный гидропривод от гидродинамического, — большие давления в гидросистемах. Так, номинальные давления в гидросистемах экскаваторов могут достигать 32 МПа , а в некоторых случаях рабочее давление может быть более 300 МПа , в то время как гидродинамические машины работают обычно при давлениях, не превышающих 1,5—2 МПа .
Объёмный гидропривод намного более компактен и меньше по массе, чем гидродинамический, и поэтому он получил наибольшее распространение.
В зависимости от конструкции и типа входящих в состав гидропередачи элементов объёмные гидроприводы можно классифицировать по нескольким признакам.
когда в качестве гидродвигателя применяется гидромотор , у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;
у которого в качестве гидродвигателя применяется гидроцилиндр — двигатель с возвратно-поступательным движением ведомого звена ( штока поршня, плунжера или корпуса);
когда в качестве гидродвигателя применён поворотный гидродвигатель , у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 270°.
Если скорость выходного звена (гидроцилиндра, гидромотора) регулируется изменением частоты вращения двигателя, приводящего в работу насос, то гидропривод считается нерегулируемым.
в котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть:
Регулирование может быть: ручным или автоматическим .
В зависимости от задач регулирования гидропривод может быть:
автоматически изменяет подачу жидкости по фактической потребности гидросистемы в режиме реального времени (без запаздывания).
в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса.
Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации , поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;
в котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой.
Достоинства такой схемы — хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе .
В насосном гидроприводе, получившем наибольшее распространение в технике, механическая энергия преобразуется насосом в гидравлическую, носитель энергии — рабочая жидкость , нагнетается через напорную магистраль к гидродвигателю, где энергия потока жидкости преобразуется в механическую. Рабочая жидкость, отдав свою энергию гидродвигателю, возвращается либо обратно к насосу (замкнутая схема гидропривода), либо в бак (разомкнутая или открытая схема гидропривода). В общем случае в состав насосного гидропривода входят гидропередача, гидроаппараты, кондиционеры рабочей жидкости, гидроёмкости и гидролинии.
Наибольшее применение в гидроприводе получили аксиально-поршневые , радиально-поршневые , пластинчатые и шестерённые насосы.
В магистральном гидроприводе рабочая жидкость нагнетается насосными станциями в напорную магистраль, к которой подключаются потребители гидравлической энергии. В отличие от насосного гидропривода, в котором, как правило, имеется один (реже 2—3) генератора гидравлической энергии (насоса), в магистральном гидроприводе таких генераторов может быть большое количество, и потребителей гидравлической энергии также может быть достаточно много.
В аккумуляторном гидроприводе жидкость подаётся в гидролинию от заранее заряженного гидроаккумулятора . Этот тип гидропривода используется в основном в машинах и механизмах с кратковременными режимами работы.
Гидроприводы бывают с электроприводом , приводом от ДВС , турбин и т. д.
В гидроприводе этого вида выходное звено гидродвигателя совершает возвратно-поступательные или возвратно-вращательные движения с большой частотой (до 100 импульсов в секунду).
Обязательными элементами гидропривода являются насос и гидродвигатель . Насос является источником гидравлической энергии, а гидродвигатель — её потребителем, то есть преобразует гидравлическую энергию в механическую. Управление движением выходных звеньев гидродвигателей осуществляется либо с помощью регулирующей аппаратуры — дросселей , гидрораспределителей и др., либо путём изменения параметров самого гидродвигателя и/или насоса.
Также обязательными составными частями гидропривода являются гидролинии , по которым жидкость перемещается в гидросистеме .
Критически важной для гидропривода (в первую очередь объёмного) является очистка рабочей жидкости от содержащихся в ней (и постоянно образующихся в процессе работы) абразивных частиц. Поэтому системы гидропривода обязательно содержат фильтрующие устройства (например, масляные фильтры ), хотя принципиально гидропривод некоторое время может работать и без них.
Поскольку рабочие параметры гидропривода существенно зависят от температуры рабочей жидкости, то в гидросистемах в некоторых случаях, но не всегда, устанавливают системы регулирования температуры (подогревающие и/или охладительные устройства).
Количество степеней свободы гидравлической системы может быть определено простым подсчётом количества независимо управляемых гидродвигателей .
Объёмный гидропривод применяется в горных и строительно-дорожных машинах . В настоящее время более 50 % общего парка мобильных строительно-дорожных машин ( бульдозеров , экскаваторов , автогрейдеров и др.) является гидрофицированной. Это существенно отличается от ситуации 1930—1940-х годов, когда в этой области применялись в основном механические передачи.
В станкостроении гидропривод также широко применяется, однако в этой области он испытывает высокую конкуренцию со стороны других видов привода .
Широкое распространение получил гидропривод в авиации . Насыщенность современных самолётов системами гидропривода такова, что общая длина трубопроводов современного пассажирского авиалайнера может достигать нескольких километров. В последнее время в авиации существует тенденция перехода на электронные системы управления ( ЭДСУ ) гидроприводами, заменяющие гидравлическую логику и цепи на электронные.
В автомобильной промышленности самое широкое применение нашли гидроусилители руля , существенно повышающие удобство управления автомобилем . Эти устройства являются разновидностью следящих гидроприводов . Гидроусилители применяют и во многих других областях техники (авиации, тракторостроении, промышленном оборудовании и др.).
В некоторых танках, например, в японском танке Тип 10 , применяется гидростатическая трансмиссия , представляющая собой, по сути, систему объёмного гидропривода движителей . Такого же типа трансмиссия устанавливается и в некоторых современных бульдозерах .
В целом, границы области применения гидропривода определяются его преимуществами и недостатками.
К основным преимуществам гидропривода относятся:
К недостаткам гидропривода относятся:
Гидравлические технические устройства известны с глубокой древности. Например, насосы для тушения пожаров существовали ещё во времена Древней Греции .
Однако, как целостная система, включающая в себя и насос , и гидродвигатель , и устройства распределения жидкости , гидропривод стал развиваться в последние 200—250 лет.
Одним из первых устройств, ставших прообразом гидропривода, является гидравлический пресс . В 1795 году патент на такое устройство получил английский изобретатель Джозеф Брама ( англ. Joseph Bramah ) , которому помогал Генри Модсли , и в 1797 году первый в истории гидравлический пресс был построен .
В конце XVIII века появились первые грузоподъёмные устройства с гидравлическим приводом, в которых рабочей жидкостью служила вода. Первый подъёмный кран с гидравлическим приводом был введён в эксплуатацию в Англии в 1846—1847 годах , и со второй половины XIX века гидропривод находит широкое применение в грузо-подъёмных машинах.
Создание первых гидродинамических передач связано с развитием в конце XIX века судостроения. В то время в морском флоте стали применять быстроходные паровые машины . Однако, из-за кавитации , повысить число оборотов гребных винтов не удавалось. Это потребовало применения дополнительных механизмов. Поскольку технологии в то время не позволяли изготавливать высокооборотные шестерённые передачи, то потребовалось создание принципиально новых передач. Первым таким устройством с относительно высоким КПД явился изобретённый немецким профессором гидравлический трансформатор (патент 1902 года) , представлявший собой объединённые в одном корпусе насос, турбину и неподвижный реактор. Однако первая применённая на практике конструкция гидродинамической передачи была создана в 1908 году , и имела КПД около 83 %. Позднее гидродинамические передачи нашли применение в автомобилях. Они повышали плавность трогания с места. В 1930 году Гарольд Синклер ( англ. Harold Sinclair ), работая в компании Даймлер , разработал для автобусов трансмиссию, включающую гидромуфту и планетарную передачу . В 1930-х годах производились первые дизельные локомотивы, использовавшие гидромуфты .
В СССР первая гидравлическая муфта была создана в 1929 году.
В 1882 году компания Армстронг Уитворс представила экскаватор , в котором впервые ковш имел гидравлический привод . Один из первых гидрофицированных экскаваторов был произведён французской компанией Poclain в 1951 году . Однако эта машина не могла поворачивать башню на 360 градусов. Первый полноповоротный экскаватор с гидроприводом был представлен этой же фирмой в 1960-м году. В начале 1970-х годов гидрофицированные экскаваторы, обладавшие большей производительностью и простотой управления, в основном, вытеснили с рынка своих предшественников — экскаваторы на канатной тяге .
Первый патент, связанный с гидравлическим усилением , был получен Фредериком Ланчестером в Великобритании в 1902 году. Его изобретение представляло собой «усилительный механизм, приводимый посредством гидравлической энергии» . В 1926 году инженер подразделения грузовиков компании Пирс Эрроу ( англ. Pierce Arrow ) продемонстрировал в компании «Дженерал моторс» гидроусилитель руля с хорошими характеристиками, однако автопроизводитель посчитал, что эти устройства будут слишком дорогими, чтобы выпускать их на рынок . Первый предназначенный для коммерческого использования гидроусилитель руля был создан компанией Крайслер в 1951 году, и сейчас большинство новых автомобилей укомплектовывается подобными устройствами.
Фирма Хонда после представления гидростатической трансмиссии в 2001 году для своей модели мотовездехода , анонсировала в 2005-м году мотоцикл с гидростатической трансмиссией, включающей насос и гидромотор. Модель начала продаваться на рынке в 2008 году. Это была первая модель транспортного средства для автодорог, в котором использовалась гидростатическая трансмиссия .
Перспективы развития гидропривода во многом связаны с развитием электроники. Так, совершенствование электронных систем позволяет упростить управление движением выходных звеньев гидропривода. В частности, в последние 10—15 лет стали появляться бульдозеры , управление которыми устроено по принципу джойстика .
С развитием электроники и вычислительных средств связан прогресс в области диагностирования гидропривода. Процесс диагностирования некоторых современных машин простыми словами может быть описан следующим образом. Специалист подключает переносной компьютер к специальному разъёму на машине. Через этот разъём в компьютер поступает информация о значениях диагностических параметров от множества датчиков, встроенных в гидросистему. Программа или специалист анализирует полученные данные и выдаёт заключение о техническом состоянии машины, наличии или отсутствии неисправностей и их локализации. По такой схеме осуществляется диагностирование, например, некоторых современных ковшовых погрузчиков . Развитие вычислительных средств позволит усовершенствовать процесс диагностирования гидропривода и машин в целом.
Важную роль в развитии гидропривода может сыграть создание и внедрение новых конструкционных материалов. В частности, развитие нанотехнологий позволит повысить прочность материалов, что позволит уменьшить массу гидрооборудования и его геометрические размеры, повысить его надёжность. С другой стороны, создание прочных и одновременно эластичных материалов позволит, например, уменьшить недостатки многих гидравлических машин, в частности, увеличить развиваемое диафрагменными насосами давление.
В последние годы наблюдается существенный прогресс в производстве уплотнительных устройств . Новые материалы обеспечивают полную герметичность при давлениях до 80 МПа , низкие коэффициенты трения и высокую надёжность .