Interested Article - Соприкасающаяся окружность

Соприкасающаяся окружность

Соприкаса́ющаяся окру́жность , окру́жность кривизны́ окружность , являющаяся наилучшим приближением заданной кривой в окрестности данной точки . В этой точке кривая и означенная окружность имеют касание , порядок которого не ниже 2. Окружность кривизны существует в каждой точке дважды дифференцируемой кривой с отличной от нуля кривизной ; в случае нулевой кривизны в качестве соприкасающейся надлежит рассматривать касательную прямую — «окружность бесконечного радиуса».

Соприкасающаяся окружность (или прямая) в точке кривой также может быть определена как предельное положение окружности (или прямой), проходящей через и две близкие к ней точки , когда стремятся к .

Связанные определения

  • Центр соприкасающейся окружности называют центром кривизны , а радиус — радиусом кривизны . Радиус кривизны является величиной, обратной кривизне кривой в заданной точке:
  • Геометрическое место центров кривизны кривой называется эволютой .

Координаты центра кривизны

Центр кривизны функции в точке находится в следующей точке :

Свойства

  • Центр соприкасающейся окружности всегда лежит на главной нормали кривой; отсюда следует, что эта нормаль всегда направлена в сторону вогнутости кривой.
  • Инверсия соприкасающейся окружности есть соприкасающеяся окружность инверсии кривой в соответствующей точке.
  • В вершинах кривой и только в них порядок касания соприкасающейся окружности превосходит 2.
  • Теорема Тэйта — Кнезера утверждает, что если кривизна гладкой плоской кривой монотонна, то соприкасающиеся окружности этой кривой вложены друг в друга.

История

Понятие соприкасающейся окружности ( лат. circulum osculans ) было введено Лейбницем . Соответствующая геометрическая конструкция содержатся также в книге « Математические начала натуральной философии » Исаака Ньютона .

Вариации и обобщения

  • Соприкасающаяся сфера пространственной кривой есть сфера с центром в точке
проходящая через . Здесь и обозначают кривизну и кручение кривой, , , трёхгранник Френе .
  • В случае если кривизна и кручение кривой отличны от нуля соприкасающаяся сфера определена и является единственной сферой, с которой кривая имеет степень соприкосновения хотя бы 3.

Примечания

  1. . Дата обращения: 26 мая 2020. 15 января 2022 года.
  2. . Дата обращения: 26 мая 2020. 5 июня 2020 года.
Источник —

Same as Соприкасающаяся окружность