Interested Article - Закон соответственных состояний

Закон соответственных состояний гласит, что все вещества подчиняются одному уравнению состояния , если это уравнение выразить через приведённые переменные. Этот закон является приближённым и позволяет достаточно просто оценивать свойства плотного газа или жидкости с точностью порядка 10—15 %. Первоначально был сформулирован Ван дер Ваальсом в 1873 году.

Формулировка

Закон соответственных состояний гласит, что все вещества подчиняются одному уравнению состояния, если это уравнение выразить через приведенные переменные. Приведённые переменные выражаются следующим образом через значения соответствующих переменных в критической точке :

где соответственно давление , молярный объём и температура . Так как равновесное состояние системы можно описать любыми двумя из этих трех переменных, то согласно закону соответственных состояний любая безразмерная комбинация есть универсальная функция двух каких-либо приведённых переменных:

для реальных систем обычно удобнее следующая форма:

,

— универсальные функции. Безразмерная величина носит название коэффициента сжимаемости . В критической точке коэффициент сжимаемости , то есть одинаков для всех веществ.

Границы применимости и теоретическое обоснование закона

Коэффициент сжимаемости в критической точке
Простые почти сферические молекулы
Вещество Вещество
Углеводороды
Вещество Вещество
Этан Бензол
Пропан Циклогексан
Изобутан Диизопропил
n -Бутан Диизобутил
Изопентан Этиловый эфир
n -Пентан Этилен
n -Гексан Пропилен
n -Гептан Ацетилен
n -Октан

О точности закона можно судить по значению критического коэффициента . Если бы закон соответственных состояний выполнялся абсолютно точно, то этот коэффициент был бы одинаков для всех веществ. Экспериментальные значения критического коэффициента для разных веществ приведены в таблице. Для простых сферических молекул он приближается к , а для ряда углеводородов — к . Логично предположить, что уравнения состояния для этих классов веществ различаются.

Питцер (Pietzer) привел список допущений, при которых справедлив закон соответственных состояний. Этот список позднее уточнил Гуггенхайм (Guggenheim):

  1. Справедлива , то есть различие между статистиками Ферми — Дирака и Бозе — Эйнштейна пренебрежимо мало, явлением квантования поступательных степеней свободы также можно пренебречь.
  2. Молекулы сферически симметричны либо в истинном смысле, либо благодаря быстрому и свободному вращению.
  3. Внутримолекулярные степени свободы не зависят от объёма, приходящегося на одну молекулу.
  4. Потенциальная энергия является функцией только различных межмолекулярных расстояний.
  5. Потенциал взаимодействия частиц является парным и выражается в виде , где — универсальная для всех веществ функция.

Первое требование выполняется при условии , где — масса молекулы, — объём, приходящийся на одну молекулу. Таким образом, закон соответственных состояний плохо отражает поведение водорода, гелия и в некоторой степени даже неона. Второе условие ограничивает применимость закона для твёрдой фазы веществ двухатомных и многоатомных молекул. Условия 2-4 исключают вещества с дипольными моментами, металлы и вещества, способные образовывать водородные связи. Используя пятое условие, можно вывести закон соответственных состояний.


Следствия из закона соответственных состояний

См. также

Уравнение состояния

Примечания

  1. , Journal of Chemical Physics 7 pp. 583—590 (1939)
  2. , Journal of Chemical Physics 13 pp. 253—261 (1945)

Литература

  • Гиршфельдер Дж., Кертисс Ч., Берд Р. М.: ИЛ, 1961. — 931с.
Источник —

Same as Закон соответственных состояний