Interested Article - Радиобиология

Радиобиология , или радиационная биология — наука, изучающая действие ионизирующих и неионизирующих излучений на биологические объекты (биомолекулы , клетки , ткани , организмы, популяции ) . Особенностью этой науки является строгая измеряемость воздействующего фактора, что обусловило развитость математических методов исследования. Другой особенностью радиобиологии является востребованность её прикладных приложений — в медицине и в радиационной защите .

Радиобиология, ранее являясь самостоятельной дисциплиной, превращается сейчас в междисциплинарную науку и имеет тесные связи с рядом теоретических и прикладных, биологических и медицинских областей знаний.

Код науки по (англ.) — 2418 (раздел — биология) .

Предмет радиобиологии

Фундаментальными задачами, составляющими предмет радиобиологии, являются:

Существуют две противоположные и одинаково неправильные точки зрения на облучение и вред его для человека — радиоэйфория и радиофобия .

Объекты и методы в радиобиологии

В соответствии с объектами радиобиологических исследований (уровней организации живого) в радиобиологии выделяют 3 раздела:

Важной чертой радиобиологических методов исследования является количественное сопоставление рассматриваемого эффекта с вызвавшей его дозой излучения , её распределением во времени и объёме реагирующего объекта.

Теоретические аспекты радиобиологии

Первой количественной теорией является теория «точечного тепла» или «точечного нагрева» (Ф. Дессауэр , 1922):

  • ионизирующее излучение обладает очень малой объемной плотностью по сравнению с другими излучениями
  • излучение обладает большой энергией, величина которой значительно превосходит энергию любой химической связи
  • облученный биологический объект состоит из относительно безразличных и весьма существенных для жизни микрообъемов и структур
  • в облучаемом объекте при поглощении относительно небольшой общей энергии в отдельных, случайных и редкорасположенных микрообъемах оставляются настолько большие порции энергии, что их можно сравнить с микролокальным нагреванием
  • так как распределение «точечного тепла» является чисто статистическим, то конечный эффект в клетке будет зависеть от случайных « попаданий » дискретных порций энергии в жизненно важные микрообъемы внутри клетки; с увеличением дозы увеличивается вероятность таких попаданий и наоборот.

Теория « мишени или попаданий » ,созданная Н. В. Тимофеевым-Ресовским с соавторами, поставила во главу угла представления о прямом действии ионизирующего излучения на клетки (30-е годы).

Прямое и непрямое действие излучения. (ROS- активные формы кислорода , RNS- реактивные соединения азота , GJ- щелевые контакты , Ex- экзосомы ) См.также

Стохастическая (вероятностная) гипотеза является дальнейшим развитием теории прямого действия излучений. Выразителями этой точки зрения являлись О. Хуг и А. Келлерер (1966). Суть их взглядов заключалась в том, что взаимодействие излучений с клеткой происходит по принципу вероятности (случайности) и что зависимость « доза-эффект » обуславливается не только прямым попаданием в молекулы и структуры-мишени, но и состоянием биологического объекта как динамической системы.

Б. И. Тарусовым и Ю. Б. Кудряшовым было показано, что свободные радикалы могут возникать при действии радиации и в неводных средах — в липидных слоях биомембран. Эта теория получила название теории липидных радиотоксинов .

Своеобразной интегральной теорией, объясняющей биологическое действие ионизирующих излучений является структурно-метаболическая теория (1976). Автор этой теории А. М. Кузин считает, что нарушения под действием радиации обусловлены деструкцией всех основных биополимерных молекул, цитоплазматических и мембранных структур в живой клетке.

В настоящее время произошел сдвиг парадигмы от теории мишени и попадания к немишенным эффектам облучения (например, эффект «свидетеля») .

История

Открытие Иваном Павловичем Пулюем (1890) и Вильгельмом Конрадом Рентгеном Х-лучей ( 1895 ), Антуаном Анри Беккерелем естественной радиоактивности ( 1896 ), Марией Склодовской-Кюри и Пьером Кюри радиоактивных свойств полония и радия ( 1898 ) явилось физической основой для рождения радиобиологии.

Этапы развития радиобиологии
Первый этап

1890—1921 гг.

описательный этап, связанный с накоплением данных и первыми попытками осмысления биологических реакций на облучение

И. П. Пулюй · В. К. Рентген · А. Беккерель · М. Склодовская · П. Кюри · И. Р. Тарханов · Е. С. Лондон · · · П. Броун · Дж. Осгоуд · Г. Хейнеке · | Ж. Бергонье · Л. Трибондо
Второй этап

1922—1944 гг.
Теория точечного тепла, становление фундаментальных принципов количественной радиобиологии, связь эффектов с величиной поглощенной дозы; открытие мутагенного действия ионизирующих излучений, развитие радиационной генетики

Ф. Дессауэр · Л. Грэй · Н. В. Тимофеев- Ресовский · А. М. Кузин · · · Д. Э. Ли · К.Циммер · Г. А. Надсон · Г. С. Филиппов · Г. Мёллер ·
Третий этап

1945—1985 гг.

дальнейшее развитие количественной радиобиологии на всех уровнях биологической организации
молекулярная и клеточная радиобиология
разработка биологических способов противолучевой защиты
лечения лучевых поражений
применение в радиобиологии ускорителей заряженных частиц
разработка радиосенсибилизирующих агентов
развитие радиобиологических принципов лучевой терапии опухолей

Дубинин Н. П. · Н. В. Лучник · Б. Л. Астауров · К. П. Хансон · В. И. Корогодин · В. Д. Жестяников · Л. Х. Эйдус · · Э. Я. Граевский · · А. В. Лебединский · П. Д. Горизонтов · Г. П. Груздев · П. П. Саксонов · Ю. Г. Григорьев · Н. Л. Делоне · А. В. Антипов · В. С. Шашков · С. П. Ярмоненко · Р. В. Петров · Р. Б. Стрелков · А. А. Ярилин · П. Г. Жеребченко · Е. Ф. Романцев · В. Г. Владимиров · А. К. Гуськова · Г. Д. Байсоголов · М. П. Домшлак · С. Н. Александров · А. А. Вайнсон · А. А. Летавет · · В. Я. Голиков · У. Я. Маргулис · А. В. Севанькаев · · ·

Четвертый этап

с 1986 года по настоящее время
эффекты малых доз
немишенное действие
механизмы неионизирующего излучения
сдвиг и смена парадигмы в радиобиологии

· В. А. Шевченко · Д. М. Спитковский · Е. Б. Бурлакова · И. Е. Воробцова · С.В. Гудков · H. R. Withers · J. Ward · H. Nagasawa · J. Little · C. Mothersill · C. Seymour · O. V. Belyakov · M. Folkard · K. Prise · B. Michael · K. Baverstock · M. Joiner · B. Marples · P. Lambin · A. Brooks · T. Elsasser · M. Scholz · T. Day · G. Zeng · A. Hooker · T. Neumaier · J. Swenson · C. Pham · A. Polyzos · A. Lo · P. Yang · J. Dyball · O. Desouky · N. Ding · G. Zhou · · Y. Ogawa

Стадии формирования радиобиологических эффектов

Формирование радиобиологических эффектов во времени и на различных уровнях организации. Классическая парадигма радиобиологии Hall EJ, Giaccia AJ. Radiobiology for the Radiologist, 7th edn. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2012

В формировании радиобиологических эффектов различают следующие стадии:

  1. Физико-химическая стадия — прямое или косвенное действие излучения на молекулы-мишени .
  2. Биохимическая стадия — действие излучения на основные компоненты радиочувствительных клеток с последующим изменением их метаболизма .
  3. Биологическая стадия — генетические и отдаленные эффекты облучения .
    • Длительность стадий от 10 −18 до 10 12 секунд.
    • Некоторые стадии обратимы и могут быть модифицированы.
    • Выраженность эффекта зависит от радиочувствительности объекта и дозы излучения . Ряд повреждений может быть восстановлен.

Радиобиология клетки

Радиационная цитология ( радиобиология клетки ) изучает влияние излучений на строение и функции клеток, а именно:

Основные изменения

Причины нарушений

Направления

Основные направления в радиобиологии
  • Общая (фундаментальная) радиобиология: радиационная биохимия | радиационная биофизика | молекулярная радиобиология | радиационная цитология | радиационная генетика | радиационная экология | космическая радиобиология
  • Периодические издания

    Учебные заведения и научные учреждения

    Радиобиологию изучают во многих научных центрах и университетах. Вот некоторые из них:

    Примечания

    1. Легеза В. И. Радиобиология, радиационная физиология и медицина: словарь-справочник / В. И. Легеза, И. Б. Ушаков, А. Н. Гребенюк, А. Е. Антушевич. — 3-е. — СПб. : Фолиант, 2017. — 176 с. — 500 экз. ISBN 978-5-93929-279-5 .
    2. , с. 11—12.
    3. UNESCO/. . UNESCO/NS/ROU/257 rev.1 (1988). Дата обращения: 9 февраля 2016. 15 февраля 2016 года.
    4. William F. Morgan. // PNAS. — 2005. — 1 октября ( т. 102 , № 40 ). — С. 14127–14128 .

    Литература

    Рекомендуемые учебники

    • Hall EJ, Giaccia AJ. Radiobiology for the Radiologist, 8th edn. Philadelphia: Wolters Kluwer, 2018
    • Joiner Michael C., van der Kogel Albert J. Basic Clinical Radiobiology, Fifth Edition, CRC Press, 2018
    • Актуальная радиобиология: курс лекций / Л. А. Ильин, Л. М. Рождественский, А. Н. Котеров, Н. М. Борисов. — М. : Издательский дом МЭИ, 2015. — 240 с. — (Высшая школа физики). — ISBN 978-5-383-00932-1 .
    • Ярмоненко С. П., Вайнсон А. А., Радиобиология человека и животных. М.: Высшая школа , 2004
    • Кудряшов Ю. Б., Радиационная биофизика , М., 2004
    • Гудков С.В. Частные вопросы радиационной биофизики. Нижний Новгород: Нижегородский госуниверситет, 2022. – 236 с. (ISBN )


    Источник —

    Same as Радиобиология