Power FM
- 1 year ago
- 0
- 0
POWER — микропроцессорная архитектура с ограниченным набором команд ( RISC ), разработанная и развиваемая компанией IBM . Название позже было расшифровано как Performance Optimization With Enhanced RISC (оптимизация производительности на базе расширенной архитектуры RISC). Этим словом также называется серия микропроцессоров, использующая указанный набор команд. Они применяются в качестве центрального процессора во многих микрокомпьютерах, встраиваемых системах , рабочих станциях , мейнфреймах и суперкомпьютерах .
Архитектура POWER прошла в своём развитии несколько поколений. Начиная с POWER3 микропроцессоры поддерживают полный набор команд 64-битной архитектуры PowerPC и не поддерживают старые команды, которые были удалены из архитектуры одновременно с появлением стандарта PowerPC. Также прекращена поддержка расширенных инструкций POWER2 , например lfq и stfq.
Для обсуждения любых продуктов, основанных на архитектуре, предназначено сообщество (куда входят, в частности, и разработки PowerPC и Cell ). Именно туда рекомендуется обращаться разработчикам и производителям, использующим платформу.
На сайте компании IBM доступны руководства, подробно описывающее различия в наборах команд архитектур POWER, POWER2 и PowerPC, POWER5.
В 1974 году IBM начала работу над созданием большой переключающей системы, способной соединять по меньшей мере 300 телефонных звонков в секунду. Расчёты предполагали, что потребуется выполнять по 20 000 инструкций для каждого из соединений, причём без задержек для остальных звонков. Таким образом, требовалась производительность не менее 12 MIPS [ источник не указан 1612 дней ] , что было чрезвычайно много по тем временам. Выручало лишь то обстоятельство, что внутреннее устройство микропроцессора могло быть значительно упрощено, так как ему приходилось бы производить только операции ввода-вывода, ветвления, сложения в регистрах, выгрузки содержимого регистров в память и в другие регистры, и совсем не приходилось бы выполнять сложные вычисления.
Эта простая организация команд, в которой каждая команда выполняет лишь отдельный шаг в большом алгоритме и должна выполняться за чётко фиксированный отрезок времени, позднее получила название RISC .
К 1975 году проект телефонного коммутатора был свёрнут, а до работающего прототипа дело так и не дошло. Тем не менее, за проектными работами вырисовывалась многообещающая архитектура процессора общего назначения, так что они были продолжены в в здании под номером 801. Так проект получил своё новое название.
Способность выполнять несколько команд одновременно, задействуя множественные структурные блоки, исследовалась в рамках проекта «801» на протяжении двух лет, похожие работы проводились для машин IBM System/360 Model 91 (построена на основе CISC -архитектуры) и CDC 6600 . Целью было определить, может ли процессор с уменьшенным набором простых команд выполнять несколько инструкций за тактовый цикл, и какие изменения должны быть для этого внесены в аппаратуру.
Для улучшения производительности разрабатываемый процессор содержал раздельные блоки ветвления, логики и арифметики с плавающей точкой. По сравнению с проектом «801», архитектура была значительно расширена для параллельной обработки команд. Для производства изначально планировалось использовать эмиттерно-связанную логику (ЭСЛ) на биполярных транзисторах, но в 1984 году технология КМОП обеспечивала лучшую плотность элементов и скорость переключения.
В 1985 году исследовательский центр Томаса Ватсона начал разработку процессора RISC второго поколения, проект был назван «Америка». В 1986 году отделение IBM в городе Остин приступило к работе над серией RS/6000, которая была наследницей этого проекта.
В 1990 году выпущены первые компьютеры под маркой IBM с процессором архитектуры POWER: «RISC System/6000» (также « RS/6000 »). Эта серия была поделена на два класса: рабочие станции и серверы , опирающиеся соответственно на архитектуры POWERstation и POWERserver. Центральный процессор, названный (позже RIOS I или ) состоял из 11 отдельных микросхем : кэш инструкций, блок арифметико-логических операций, блок вычислений с плавающей точкой, 4 микросхемы кэша данных, устройство управления памятью, 2 блока ввода-вывода, тактовый генератор.
Для маломощных станций RS/6000 был разработан однокорпусный вариант RIOS с названием RSC ( — RISC на одной микросхеме); впервые он увидел свет в 1992 году.
Спустя 5 лет после начала разработки IBM объявила о начале поставок систем RISC 6000 . Это была первая разработка, поддерживаемая операционной системой AIX в новой архитектуре, получившей название POWER. Первая реализация архитектуры содержала однокорпусное решение (на одной микросхеме) для встраиваемых приложений и многокорпусное решение под названием POWER/RIOS.
Проект Amazon был начат в 1990 году с целью создания архитектуры, способной поддерживать и AIX , и OS/400 . Команда разработчиков OS/400 была занята созданием RISC-набора команд для замены CISC-набора, использовавшегося в системах AS/400 . Результатом их работы стал набор команд, основанный на IMPI, расширенный до 64 бит и дополненный несколькими RISC-инструкциями для ускорения коммерческих вычислений, столь характерных для AS/400. Руководство компании пыталось настаивать на использовании архитектуры PowerPC, но получило отказ, так как PowerPC был несравним с масштабом AS/400. В конце концов было выработано компромиссное решение в виде расширения набора команд PowerPC, названное Amazon.
В то же время команда системы RS/6000 игнорировала процессоры PowerPC, так как нуждалась в расширенных возможностях стандарта POWER2 . Эти возможности также были добавлены в Amazon, и с этих пор набор команд PowerPC стал способен работать в архитектурах RS/6000 и AS/400.
Первым проектом разработки подобного процессора стал Belatrix (название звезды в созвездии Ориона, также называемой Amazon). Этот проект поставил перед собой слишком завышенные цели и был прекращён до своего окончания. Остинская команда (где были разработаны RS/6000) занялась разработкой 64-битного процессора архитектуры PowerPC с расширениями POWER2 , то есть POWER3 , а рочестерская команда (авторы AS/400), со своей стороны, такого же процессора с высокой вычислительной мощностью, но c расширениями AS/400. Третья команда, в Эндикотте, была задействована для разработки маломощного процессора, аналогичного рочестерскому.
В 1995 году были выпущены следующие процессоры архитектуры AS/400: A25/30 Muskie — многокорпусный мощный и A10 Cobra — однокорпусный.
Рочестерская версия задержалась до 1997 года. Её встраивали как в машины RS/6000 под именем , так и в машины AS/400, как позднее и другие процессоры этой серии.
Прошло не менее 5 лет, прежде чем процессору RIOS/POWER1 была создана замена, POWER2 . В него добавили второй блок арифметико-логических операций и второй блок вычислений с плавающей точкой. Кроме того, был расширен набор команд:
В 1996 году был разработан однокристальный вариант POWER2, P2SC ( POWER2 Super Chip — супермикросхема POWER2).
В 1991 году в IBM осознали потенциал процессоров POWER в качестве товара для других производителей компьютерной техники. Предложение было сделано компании Apple , оно включало обоюдное сотрудничество для разработки семейства однокорпусных процессоров. Apple в скором времени подключила к работе компанию Motorola , будучи её крупнейшим клиентом в области микропроцессоров класса настольных систем, что позволило использовать опыт Motorola в производстве больших тиражей и создало дублирующий источник процессоров для Apple. Это трёхстороннее сотрудничество получило название альянса AIM — по первым буквам названий Apple, IBM, Motorola (также слово цель по-англ.).
Первым результатом сотрудничества стала разработка (спустя 2 года после начала) архитектуры PowerPC — модифицированной версии POWER. Были добавлены вычисления с плавающей точкой над числами одинарной точности, универсальное умножение и деление регистра на регистр, удалены некоторые другие — в частности, специальный вариант умножения и деления на регистр MQ . Кроме того, была создана 64-битная версия архитектуры.
Первым чипом нового поколения стал , основанный на RSC. Более подробная информация об этом семействе процессоров содержится в статье PowerPC .
Процессор POWER3 был представлен в 1998 году. Он поддерживал весь набор 64-битных инструкций POWER, включая все расширенные команды, имевшиеся на тот момент, и содержал два блока вычислений с плавающей точкой, три блока с фиксированной точкой и два блока загрузки/выгрузки.
Все последующие поколения процессоров POWER поддерживали полный набор инструкций, так что не осталось вариантов, поддерживающих только строго POWER или POWER2.
Микропроцессор POWER4 , первый из серии GIGA , был анонсирован в 1999 году, а выпущен в 2001. Это был 64-битный процессор, поддерживающий полный набор инструкций. Кроме того, он поддерживал расширения AS/400, благодаря чему использовался в системах RS/6000 и AS/400 взамен POWER3 и RS64. Набор команд был пополнен несколькими новыми командами (напр., mfcr ), имеющими поле операнда, что дало основание зафиксировать новый стандарт PowerPC 2.00 .
Поколение POWER5 было представлено в 2004 году. Процессор стал двухъядерным, с поддержкой одновременной многопоточности (одновременного выполнения двух цепочек команд), таким образом работая как 4 логических процессора. Выпускался по техпроцессу 130 нм SOI . С помощью технологии (сокр. ViVA, рус. Виртуальная векторная архитектура , ) несколько процессоров POWER5 могут объединяться в единый векторный процессор . Кроме того, набор инструкций был расширен на несколько команд.
Последующий выпуск POWER5+ ещё расширил набор инструкций, новый набор получил название ISA 2.02 .
Выпущен 21 мая 2007 года . Привнёс в стандарт POWER инструкции VMX (параллельная обработка данных), обновил до версии 2, таким образом осуществив большой шаг вперёд со времён перехода с POWER3 на POWER4 . Двухъядерный дизайн, тактовые частоты до 4,7 ГГц при нормах выпуска 65 нм SOI . Содержит развитую систему взаимодействия с другими такими же процессорами. Потребление энергии на уровне POWER5 , тогда как производительность вдвое выше.
Выпущен в 2010 году . Выпускается по техпроцессу 45 нм SOI, имеет до 8 ядер на процессор, частота — от 3 до 4,25 ГГц. Теоретическая производительность на ядро — 33,12 G FLOPS и до 264,96 G FLOPS на процессор.
Процессор POWER7 известен тем, что использовался в суперкомпьютере IBM Watson , который участвовал в поединке с человеком в телевизионный викторине Jeopardy! и одержал победу. Суперкомпьютер IBM Watson применяется сегодня в сфере здравоохранения и в финансовом секторе.
В августе 2012 года на 24 была представлена обновлённая версия POWER7+, изготовленная по техпроцессу 32 нм SOI. До 8 ядер на чип, каждое ядро исполняет до 4 потоков.
Представлен в 2013 году, изготовлен по 22-нм SOI. 6 или 12 ядер на чип, тактовая частота от 2,5 до 5 ГГц, каждое ядро исполняет одновременно до 8 потоков.
Процессор имеет общий кэш L3 размером 48 МБ (6-ядерные модели) или 96 МБ (12-ядерные модели).
В процессор встроены высокопроизводительные контроллеры памяти ( DDR3 / DDR4 ) и системных каналов ввода-вывода (CAPI port на основе PCI Express 3.0 , в том числе для подключения ASIC , FPGA , GPU ).
Питанием процессора управляет встроенный микроконтроллер на базе PowerPC 405 с 512 килобайтами SRAM -памяти, настраивая 1764 встроенных регулятора напряжения .
Векторно-скалярное устройство процессора для работы с числами c плавающей запятой выдаёт до 8 результатов с плавающей запятой двойной точности, что обеспечивает пиковую производительность 384 G FLOPS на процессор.
Для многих видов нагрузок процессор POWER8 показывает прирост производительности в 2-3 раза по сравнению с предыдущим процессором POWER7 .
Дизайн следующего поколения процессоров POWER9 был начат IBM параллельно разработке POWER8 . Ожидалось, что в новом типе процессоров впервые появится поддержка элементов стандарта Power ISA 3.0, включая инструкции VSX-3 и поддержку технологии nVidia NVLink .
Министерство энергетики США совместно с Национальной лабораторией Ок-Ридж и Ливерморский национальной лабораторией заключили контракт с IBM и nVidia на строительство двух суперкомпьютеров Summit и Sierra на базе процессоров POWER9 и .
POWER9 производятся по 14-нм технологическому процессу и доступны в двух версиях. Архитектура POWER9 открыта для лицензирования и модификации для членов фонда OpenPOWER .
Внутреннее устройство POWER заимствовано из проекта 801, который считается первым истинным RISC-процессором. Последний нашёл применение в вычислительных блоках, производимых IBM, но не имел широкой известности, пока в середине 1980-х не был выпущен компьютер IBM PC/RT .
Одновременно с выпуском PC/RT IBM запустила проект «Америка», поставив цель создать самый производительный центральный процессор на рынке. На тот момент важнейшими казались две проблемы:
Проект «Америка» сосредоточился на вычислениях с плавающей точкой и через некоторое время пополнился новыми алгоритмами 64-битового умножения и деления с двойной точностью за один такт, разработанными в начале 1980-х. Математический сопроцессор был отдельной частью от декодера и блока целочисленной арифметики, что позволяло одновременно выполнять вычисления и с плавающей точкой, и целочисленные. Все это было дополнено развитым декодером, который мог параллельно запрашивать одну инструкцию, расшифровывать другую и посылать ещё две в исполнительные блоки. Получился первый в истории практический суперскалярный процессор.
Он содержал тридцать два 32-разрядных целочисленных регистра и ещё тридцать два 64-разрядных регистра с плавающей точкой, каждый в своём разделе. Кроме того, имелось несколько регистров для внутренних нужд внутри блока ветвления, в частности, счётчик адреса.
Тогда как 801 был простым устройством, чрезмерное количество дополнений превратило его в сложный процессор, гораздо сложнее большинства конкурирующих RISC-изделий. Например, набор команд POWER (и PowerPC) включает более 100 опкодов переменной длины, многие из которых являются модификациями друг друга. Для сравнения: архитектура ARM располагает только 34 инструкциями.
В конструкцию заложено и одно необычное свойство: виртуальное адресное пространство . Все адреса во время работы конвертируются в 52-битное представление, таким образом получается, что каждая программа обладает плоским 32-битным пространством адресов, но при этом каждая может занимать эти блоки произвольно [ уточнить ] .
Первый процессор состоял из 3 блоков: ветвления, целочисленных операций и вычислений с плавающей точкой. Все они собирались на довольно большой материнской плате. Использовались в основном в рабочих станциях RS/6000 . Вариация RSC представляла собой одночиповый вариант, который так же, как и многочиповый, использовался в RS/6000.
POWER2 был последователем POWER1 с улучшениями, подсказанными в процессе его реальной эксплуатации. Его эксплуатация оказалась самой продолжительной: в течение 5 лет с начала в 1993 году. Появился второй блок вычислений с плавающей точкой, 256 КБ кэш -памяти, 128-разрядная математика с плавающей точкой.
POWER3 последовал в 1998 году, с полновесной 64-битной организацией, но сохраняя совместимость с полным набором команд POWER. Это стало важной отличительной особенностью всех процессоров POWER начиная с третьей версии. Также добавились третий блок арифметико-логических операций и второй декодер команд, итого 8 функциональных блоков.
POWER4 объединил два одинаковых процессора POWER3 на одной микросхеме, сделал их быстрее и дополнил шинами быстродействующей связи с соседними процессорами (количеством до 3). Таким образом, это поколение может быть объединено на материнской плате в 8-процессорные SMP -системы. В ситуации, когда задача требует большой пропускной способности, а не параллельных вычислений, по одному ядру из пары может быть выключено, и у оставшихся ядер окажется в полном распоряжении быстродействующая шина и кэш 3-го уровня. Многие считали POWER4 на тот момент самым производительным процессором из имевшихся, даже без объединения в четвёрки.
POWER5 был выпущен в 2004 году. Версия на 1,9 ГГц показала самые высокие результаты в тесте для однопроцессорных систем среди всех коммерчески доступных процессоров. На их основе строятся серверы серии eServers моделей i5 и p5. Улучшения по сравнению с POWER4 составили: больший по размеру кэш 2-го уровня, контроллер памяти непосредственно на кристалле, многопоточность (ОС видит несколько процессоров вместо одного), усовершенствованный механизм управления электропитанием, особый одноядерный режим, гипервизор (hypervisor) и eFuse (аппаратное устранение ошибок).
Главный инженер IBM по микропроцессорам Рави Аримили сказал: «Конструкция POWER5 представляет собой решение среднего уровня, его можно расширять вверх до области высокопроизводительных вычислений и вниз, до уровня серверов-лезвий.» Серверы IBM, построенные на этом процессоре, поддерживают функции виртуализации : логическое разбиение и микроразбиение. Для каждого ЦПУ может быть создано до 10 логических разделов, большие 64-битные ОС поддерживают до 256 независимых операционных систем. Память, вычислительная мощь процессоров и каналы ввода-вывода могут динамически перераспределяться между разделами.
В 2007 году было официально объявлено о POWER6 .
8 февраля 2010 компания IBM представила вычислительные системы на основе процессора POWER7 .
Первый процессор архитектуры PowerPC , под названием PowerPC 601, был наследником процессора RSC, некоторые базовые инструкции выполнялись с помощью эмуляции через интерфейс шины, аналогично конструкции . Такое решение позволило IBM использовать 601 в различных моделях компьютеров, приспосабливая структуру материнской платы к заданным требованиям. Позже архитектуры PowerPC и POWER все же разделились, хотя и по сей день сохраняют совместимость на уровне машинных команд.
Выпускался процессор RS64, он был основан на архитектуре PowerPC (а значит, и POWER) и использовался в системах RS/6000 и AS/400. Оптимизирован для коммерческих расчётов и не обладает большой мощностью при вычислениях с плавающей точкой, характерных для POWER. Постепенно был вытеснен POWER4.
Процессор Gekko был создан для игровой приставки Nintendo GameCube , представлял собой модифицированную версию PowerPC 750CXe. Процессор для приставок следующего поколения, Wii , был также разработан в стенах IBM.
Дизайн широко известного процессора Cell основан на использовании простого многопоточного ядра, работающего на высокой тактовой частоте и связанного с восемью отдельными векторными сопроцессорами. Используется в игровой приставке Sony PlayStation 3 и в некоторых задачах многократно превосходит по производительности настольные процессоры того времени, что вызвало значительный интерес к этой разработке.
Наконец, игровая приставка Xbox 360 , также опирается на процессор IBM Xenon , состоящий из трёх ядер, работающих на частоте 3,2 ГГц.