Индекс массы тела
- 1 year ago
- 0
- 0
Эта статья включает описание термина «энергия покоя»
Эта статья включает описание термина «E=mc 2 »; см. также другие значения .
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция теории относительности , согласно которой полная энергия физического объекта ( физической системы , тела ) в состоянии покоя равна его (её) массе , умноженной на размерный множитель квадрата скорости света в вакууме :
, | (1) |
где — энергия объекта, — его масса, — скорость света в вакууме, равная 299 792 458 м/с .
В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:
1) с одной стороны, концепция означает, что масса тела ( инвариантная масса , называемая также массой покоя ) равна (с точностью до постоянного множителя c²) энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя , или в широком смысле внутренней энергии этого тела ,
, | (2) |
где — энергия покоя тела, — его масса покоя;
2) с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, для любого движущегося объекта было введено понятие релятивистской массы , равной (с точностью до множителя c²) полной энергии этого объекта (включая кинетическую ) ,
, | (3) |
где — полная энергия объекта, — его релятивистская масса.
Первая интерпретация не является лишь частным случаем второй. Хотя энергия покоя является частным случаем энергии, а практически равна в случае нулевой или малой скорости движения тела, но имеет выходящее за рамки второй интерпретации физическое содержание: эта величина является скалярным (то есть выражаемым одним числом) инвариантным (неизменным при смене системы отсчёта) множителем в определении 4-вектора энергии-импульса , аналогичным ньютоновской массе и являющимся её прямым обобщением , и к тому же является модулем 4-импульса. Дополнительно, именно (а не ) является единственным скаляром, который не только характеризует инертные свойства тела при малых скоростях, но и через который эти свойства могут быть достаточно просто записаны для любой скорости движения тела .
Таким образом, — инвариантная масса — физическая величина , имеющая самостоятельное и во многом более фундаментальное значение .
В современной теоретической физике концепция эквивалентности массы и энергии используется в первом смысле . Главной причиной, почему приписывание массы любому виду энергии считается чисто терминологически неудачным и поэтому практически вышло из употребления в стандартной научной терминологии, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого подхода может запутывать и в конечном итоге оказывается неоправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорится о массе, имеется в виду инвариантная масса. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. Этот термин подчёркивает увеличение инертных свойств движущегося тела вместе с его энергией, что само по себе вполне содержательно .
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году , однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
В современной культуре формула является едва ли не самой известной из всех физических формул, что обусловливается её связью с устрашающей мощью атомного оружия . Кроме того, именно эта формула является символом теории относительности и широко используется популяризаторами науки .
Исторически принцип эквивалентности массы и энергии был впервые сформулирован в своей окончательной форме при построении специальной теории относительности Альбертом Эйнштейном . Им было показано, что для свободно движущейся частицы, а также свободного тела и вообще любой замкнутой системы частиц, выполняются следующие соотношения :
, | (1.1) |
где , , , — энергия , импульс , скорость и инвариантная масса системы или частицы, соответственно, — скорость света в вакууме . Из этих выражений видно, что в релятивистской механике , даже когда в нуль обращаются скорость и импульс тела (массивного объекта), его энергия в нуль не обращается , оставаясь равной некоторой величине, определяемой массой тела:
. | (1.2) |
Эта величина носит название энергии покоя , и данное выражение устанавливает эквивалентность массы тела этой энергии. На основании этого факта Эйнштейном был сделан вывод, что масса тела является одной из форм энергии и что тем самым законы сохранения массы и энергии объединены в один закон сохранения .
Энергия и импульс тела являются компонентами 4-вектора энергии-импульса (четырёхимпульса) (энергия — временной, импульс — пространственными) и соответствующим образом преобразуются при переходе из одной системы отсчёта в другую, а масса тела является лоренц-инвариантом , оставаясь при переходе в другие системы отсчёта постоянной, и имея смысл модуля вектора четырёхимпульса.
Несмотря на то, что энергия и импульс частиц аддитивны , то есть для системы частиц имеем:
(1.3) |
масса частиц аддитивной не является , то есть масса системы частиц, в общем случае, не равна сумме масс составляющих её частиц.
Таким образом, энергия (неинвариантная, аддитивная, временная компонента четырёхимпульса) и масса (инвариантный, неаддитивный модуль четырёхимпульса) — это две разные физические величины .
Эквивалентность инвариантной массы и энергии покоя означает, что в сопутствующей системе отсчёта, в которой свободное тело покоится, его энергия (с точностью до множителя ) равна его инвариантной массе .
Четырёхимпульс равен произведению инвариантной массы на четырёхскорость тела.
, | (1.4) |
Это соотношение следует считать аналогом в специальной теории относительности классического определения импульса через массу и скорость.
После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может интерпретироваться двояко. С одной стороны, это инвариантная масса, которая — именно в силу инвариантности — совпадает с той массой, что фигурирует в классической физике , с другой — можно ввести так называемую релятивистскую массу , эквивалентную полной (включая кинетическую) энергии физического объекта :
, | (2.1) |
где — релятивистская масса, — полная энергия объекта.
Для массивного объекта (тела) эти две массы связаны между собой соотношением:
, | (2.2) |
где — инвариантная («классическая») масса, — скорость тела.
Соответственно,
. | (2.3) |
Энергия и релятивистская масса — это одна и та же физическая величина (неинвариантная, аддитивная, временная компонента четырёхимпульса) .
Эквивалентность релятивистской массы и энергии означает, что во всех системах отсчёта энергия физического объекта (с точностью до множителя ) равна его релятивистской массе .
Введённая таким образом релятивистская масса является коэффициентом пропорциональности между трёхмерным («классическим») импульсом и скоростью тела :
, | (2.4) |
Аналогичное соотношение выполняется в классической физике для инвариантной массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Это в дальнейшем привело к тезису, что масса тела зависит от скорости его движения .
В процессе создания теории относительности обсуждались понятия продольной и поперечной массы массивной частицы (тела). Пусть сила, действующая на тело, равна скорости изменения релятивистского импульса. Тогда связь силы
и ускорения
существенно изменяется по сравнению с классической механикой:
Если скорость перпендикулярна силе, то а если параллельна, то где — релятивистский фактор . Поэтому называют поперечной массой, а — продольной.
Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая инвариантную массу (покоя). В частности, выделяются следующие недостатки введения термина «релятивистская масса» :
Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной, и в научной литературе. В научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.
В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона , и его величина определяется гравитационной массой тела , которая с высокой степенью точности равна по величине инертной массе , о которой шла речь выше, что позволяет говорить о просто массе тела .
В релятивистской физике гравитация подчиняется законам общей теории относительности , в основе которой лежит принцип эквивалентности , заключающийся в неотличимости явлений, происходящих локально в гравитационном поле, от аналогичных явлений в неинерциальной системе отсчёта, движущейся с ускорением, равным ускорению свободного падения в гравитационном поле. Можно показать, что данный принцип эквивалентен утверждению о равенстве инертной и гравитационной масс .
В общей теории относительности энергия играет ту же роль, что и гравитационная масса в классической теории. Действительно, величина гравитационного взаимодействия в этой теории определяется так называемым тензором энергии-импульса , являющимся обобщением понятия энергии .
В простейшем случае точечной частицы в центрально-симметричном гравитационном поле объекта, масса которого много больше массы частицы, сила, действующая на частицу, определяется выражением :
где G — гравитационная постоянная , M — масса тяжёлого объекта, E — полная энергия частицы, v — скорость частицы, — радиус-вектор , проведённый из центра тяжёлого объекта в точку нахождения частицы. Из этого выражения видна главная особенность гравитационного взаимодействия в релятивистском случае по сравнению с классической физикой: оно зависит не только от массы частицы, но и от величины и направления её скорости. Последнее обстоятельство, в частности, не позволяет ввести однозначным образом некую эффективную гравитационную релятивистскую массу, сводившую бы закон тяготения к классическому виду .
Важным предельным случаем является случай частицы, масса которой равна нулю. Примером такой частицы является фотон — частица-переносчик электромагнитного взаимодействия . Из приведённых выше формул следует, что для такой частицы справедливы следующие соотношения:
Таким образом, частица с нулевой массой вне зависимости от своей энергии всегда движется со скоростью света. Для безмассовых частиц введение понятия «релятивистской массы» в особой степени не имеет смысла, поскольку, например, при наличии силы в продольном направлении скорость частицы постоянна, а ускорение, следовательно, равно нулю, что требует бесконечной по величине эффективной массы тела. В то же время, наличие поперечной силы приводит к изменению направления скорости, и, следовательно, «поперечная масса» фотона имеет конечную величину.
Аналогично бессмысленно для фотона вводить эффективную гравитационную массу. В случае центрально-симметричного поля, рассмотренного выше, для фотона, падающего вертикально вниз, она будет равна , а для фотона, летящего перпендикулярно направлению на гравитационный центр, — .
Полученная А. Эйнштейном эквивалентность массы тела запасённой в теле энергии стала одним из главных практически важных результатов специальной теории относительности. Соотношение показало, что в веществе заложены огромные (благодаря квадрату скорости света) запасы энергии, которые могут быть использованы в энергетике и военных технологиях .
В международной системе единиц СИ отношение энергии и массы выражается в джоулях на килограмм , и оно численно равно квадрату значения скорости света в метрах в секунду :
Таким образом, 1 грамм массы эквивалентен следующим значениям энергии:
В ядерной физике часто применяется значение отношения энергии и массы, выраженное в мегаэлектронвольтах на атомную единицу массы — ≈931,494 МэВ/а.е.м.
Энергия покоя способна переходить в кинетическую энергию частиц в результате ядерных и химических реакций , если в них масса вещества, вступившего в реакцию, больше массы вещества, получившегося в результате. Примерами таких реакций являются :
В этой реакции выделяется порядка 35,6 МДж тепловой энергии на кубический метр метана, что составляет порядка 10 −10 от его энергии покоя. Таким образом, в химических реакциях преобразование энергии покоя в кинетическую энергию значительно ниже, чем в ядерных. На практике этим вкладом в изменение массы прореагировавших веществ в большинстве случаев можно пренебречь, так как оно обычно лежит вне пределов возможности измерений.
В практических применениях превращение энергии покоя в энергию излучения редко происходит со стопроцентной эффективностью. Теоретически совершенным превращением было бы столкновение материи с антиматерией , однако в большинстве случаев вместо излучения возникают побочные продукты и вследствие этого только очень малое количество энергии покоя превращается в энергию излучения.
Существуют также обратные процессы, увеличивающие энергию покоя, а следовательно и массу. Например, при нагревании тела увеличивается его внутренняя энергия , в результате чего возрастает масса тела . Другой пример — столкновение частиц. В подобных реакциях могут рождаться новые частицы, массы которых существенно больше, чем у исходных. «Источником» массы таких частиц является кинетическая энергия столкновения.
Представление о массе, зависящей от скорости, и об имеющейся связи между массой и энергией начало формироваться ещё до появления специальной теории относительности. В частности, в попытках согласовать уравнения Максвелла с уравнениями классической механики некоторые идеи были выдвинуты в трудах Генриха Шрамма (1872), Н. А. Умова (1874), Дж. Дж. Томсона (1881), О. Хевисайда (1889), , М. Абрагама , Х. Лоренца и А. Пуанкаре . Однако только у А. Эйнштейна эта зависимость универсальна, не связана с эфиром и не ограничена электродинамикой .
Считается, что впервые попытка связать массу и энергию была предпринята в работе Дж. Дж. Томсона , появившейся в 1881 году . Томсон в своей работе вводит понятие электромагнитной массы, называя так вклад, вносимый в инертную массу заряженного тела электромагнитным полем , создаваемым этим телом .
Идея наличия инерции у электромагнитного поля присутствует также и в работе О. Хевисайда , вышедшей в 1889 году . Обнаруженные в 1949 году черновики его рукописи указывают на то, что где-то в это же время, рассматривая задачу о поглощении и излучении света, он получает соотношение между массой и энергией тела в виде .
В 1900 году А. Пуанкаре опубликовал работу, в которой пришёл к выводу, что свет как переносчик энергии должен иметь массу, определяемую выражением где E — переносимая светом энергия, v — скорость переноса .
В работах М. Абрагама ( 1902 год ) и Х. Лоренца ( 1904 год ) было впервые установлено, что, вообще говоря, для движущегося тела нельзя ввести единый коэффициент пропорциональности между его ускорением и действующей на него силой. Ими были введены понятия продольной и поперечной масс, применяемые для описания динамики частицы, движущейся с околосветовой скоростью, с помощью второго закона Ньютона . Так, Лоренц в своей работе писал :
Следовательно, в процессах, при которых возникает ускорение в направлении движения, электрон ведёт себя так, как будто он имеет массу а при ускорении в направлении, перпендикулярном к движению, как будто обладает массой Величинам и поэтому удобно дать названия «продольной» и «поперечной» электромагнитных масс.
Оригинальный текст (англ.)Hence, in phenomena in which there is an acceleration in the direction of motion, the electron behaves as if it had a mass , those in which the acceleration is normal to the path, as if the mass were . These quantities and may therefore properly be called the "longitudinal" and "transverse" electromagnetic masses of the electron
Экспериментально зависимость инертных свойств тел от их скорости была продемонстрирована в начале XX века в работах В. Кауфмана ( 1902 год ) и А. Бухерера ( 1908 год ) .
В 1904—1905 годах Ф. Газенорль в своей работе приходит к выводу, что наличие в полости излучения проявляется в том числе и так, будто бы масса полости увеличилась .
В 1905 году появляется сразу целый ряд основополагающих работ А. Эйнштейна , в том числе и работа, посвящённая анализу зависимости инертных свойств тела от его энергии . В частности, при рассмотрении испускания массивным телом двух «количеств света» в этой работе впервые вводится понятие энергии покоящегося тела и делается следующий вывод :
Масса тела есть мера содержания энергии в этом теле; если энергия изменяется на величину L , то масса изменяется соответственно на величину L /9×10 20 , причём здесь энергия измеряется в эргах, а масса — в граммах… Если теория соответствует фактам, то излучение переносит инерцию между излучающими и поглощающими телами
Оригинальный текст (нем.)Die Masse eines Körpers ist ein Maß für dessen Energieinhalt; ändert sich die Energie um L , so ändert sich die Masse in demselben Sinne um L /9.10 20 wenn die Energie in Erg und die Masse in Grammen gemessen wird… Wenn die Theorie den Tatsachen entspricht, so überträgt die Strahlung trägheit zwischen den emittierenden und absorbierenden Körpern
В 1906 году Эйнштейн впервые говорит о том, что закон сохранения массы является всего лишь частным случаем закона сохранения энергии .
В более полной мере принцип эквивалентности массы и энергии был сформулирован Эйнштейном в работе 1907 года , в которой он пишет
…упрощающее предположение ε 0 является одновременно выражением принципа эквивалентности массы и энергии…
Оригинальный текст (нем.)…daß die vereinfachende Festsetzung ε 0 zugleich der Ausdruck des Prinzipes der Äquivalenz von Masse und Energie ist…
Под упрощающим предположением здесь имеется в виду выбор произвольной постоянной в выражении для энергии. В более подробной статье, вышедшей в том же году , Эйнштейн замечает, что энергия является также и мерой гравитационного взаимодействия тел.
В 1911 году выходит работа Эйнштейна, посвящённая гравитационному воздействию массивных тел на свет . В этой работе рассматривается эффект замедления времени вблизи массивных тел, что уменьшает скорость света вблизи них. Рассматривая распространение света в виде волн (используя принцип Гюйгенса) в вакууме с переменной скоростью, Эйнштейн вычислил эффект преломления лучей света (по аналогии с преломлением света в линзе или атмосфере Земли). В результате вычислений для луча света в поле тяготения Солнца выводится значение отклонения луча на 0,83 дуговой секунды , что в два раза меньше правильного значения, полученного им же позже на основе развитой общей теории относительности . Интересно, что то же самое половинное значение было получено И. фон Зольднером ещё в 1804 году , но его работа осталась незамеченной .
Экспериментально эквивалентность массы и энергии была впервые продемонстрирована в 1933 году . В Париже Ирен и Фредерик Жолио-Кюри сделали фотографию процесса превращения кванта света , несущего энергию, в две частицы, имеющих ненулевую массу. Приблизительно в то же время в Кембридже Джон Кокрофт и Эрнест Томас Синтон Уолтон наблюдали выделение энергии при делении атома на две части, суммарная масса которых оказалась меньше, чем масса исходного атома .
С момента открытия формула стала одной из самых известных физических формул и является символом теории относительности . Несмотря на то, что исторически формула была впервые предложена не Альбертом Эйнштейном, сейчас она ассоциируется исключительно с его именем, например, именно эта формула была использована в качестве названия вышедшей в 2005 году телевизионной биографии известного учёного . Известности формулы способствовало широко использованное популяризаторами науки контринтуитивное заключение, что масса тела увеличивается с увеличением его скорости. Кроме того, с этой же формулой ассоциируется мощь атомной энергии . Так, в 1946 году журнал « Time » на обложке изобразил Эйнштейна на фоне гриба ядерного взрыва с формулой на нём .