Interested Article - Вторая космическая скорость

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) — наименьшая скорость , которую необходимо придать стартующему с поверхности небесного тела объекту (например, космическому аппарату ), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с . Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для тела на поверхности Солнца вторая космическая скорость составляет 617,7 км/с .

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по параболе относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой. Если чуть меньше, то она превращается в эллипс . В общем случае все они являются коническими сечениями .

Если тело запущено вертикально вверх со второй космической и более высокой скоростью, оно никогда не остановится и не начнёт падать обратно.

Эту же скорость приобретает у поверхности небесного тела любое космическое тело, которое на бесконечно большом расстоянии покоилось, а затем стало падать.

Впервые вторая космическая скорость была достигнута космическим аппаратом Луна-1 (СССР) 2 января 1959 года.

Вычисление

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты , если будет падать на неё из бесконечности . Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем затем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, r — радиус планеты, h — высота тела над поверхностью планеты, R = h + r — расстояние от центра планеты до тела, G гравитационная постоянная , v 2 — вторая космическая скорость.

Решая это уравнение относительно v 2 , получим

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания в данной точке (например, на поверхности небесного тела) равен с точностью до знака удвоенному ньютоновскому гравитационному потенциалу в этой точке:

Вторая космическая скорость для различных объектов

Вторая космическая скорость на поверхности некоторых небесных тел
Небесное тело Масса (в единицах массы Земли , M ) 2-я космическая скорость v , км/с v / v Земли
Плутон 0,002 1,2 0,11
Луна 0,0123 2,4 0,21
Меркурий 0,055 4,3 0,38
Марс 0,107 5,0 0,45
Венера 0,815 10,22 0,91
Земля 1 11,2 1
Уран 14,5 22,0 1,96
Нептун 17,5 24,0 2,14
Сатурн 95,3 36,0 3,21
Юпитер 318,35 61,0 5,45
Солнце 333 000 617,7 55,2
Млечный Путь * (4,3 ± 1,0) × 10 17 551 +32
−22
49,2 +2,9
−2,0

* Для неподвижного тела на галактоцентрической орбите Солнца, на расстоянии 8,20 ± 0,09 килопарсек от центра Галактики. В отличие других примеров в таблице, здесь точка, для которой указана скорость убегания, находится не на поверхности тела, а в глубине диска Галактики.

См. также

Примечания

  1. Кабардин О. Ф., Орлов В. А., Пономарева А. В. Факультативный курс физики. 8 класс. — М. : Просвещение , 1985. — С. 176. — 143 500 экз.
  2. Савельев И. В. Курс общей физики. — М. : Наука, 1987. — Т. 1 : Механика. Молекулярная физика. — С. 179.
  3. McMillan P. J. The mass distribution and gravitational potential of the Milky Way (англ.) // Monthly Notices of the Royal Astronomical Society. — 2017. — Vol. 465 , iss. 1 . — P. 76—94 . — doi : . — Bibcode : . — arXiv : .
  4. Kafle P.R., Sharma S., Lewis G.F., Bland-Hawthorn J. On the Shoulders of Giants: Properties of the Stellar Halo and the Milky Way Mass Distribution (англ.) // The Astrophysical Journal. — 2014. — Vol. 794 , iss. 1 . — P. 59 . — doi : . — Bibcode : . — arXiv : .
Источник —

Same as Вторая космическая скорость