Молекулярная биология
- 1 year ago
- 0
- 0
Молекулярная филогенетика — способ установления родственных связей между живыми организмами на основании изучения структуры полимерных макромолекул — ДНК , РНК и белков . Результатом молекулярно-филогенетического анализа является построение филогенетического дерева живых организмов.
Близкое родство между живыми организмами обычно сопровождается большой степенью сходства в строении тех или иных макромолекул, а молекулы не родственных организмов сильно различаются между собой. Молекулярная филогения использует такие данные для построения филогенетического древа, которое отражает гипотетический ход эволюции исследуемых организмов. Возможность анализировать и подробно изучать эти молекулы появилась только в последние десятилетия XX века.
Молекулярная филогенетика оказала сильнейшее влияние на научную классификацию живых организмов. Методы работы с макромолекулами стали доступны биологам самых различных специальностей, что привело к лавинообразному накоплению новой информации о живых организмах. На основании этих данных старые предположения об эволюции живых организмов пересматриваются. Описывают новые группы, в том числе, выделяемые только на основе молекулярно-филогенетических данных.
Существует большое количество методов построения филогении на основании молекулярных данных. Их можно подразделить на два типа:
Данная группа методов базируется на данных о генетических дистанциях. Общий принцип заключается в попарном сравнении объектов и построении матрицы дистанций, которая затем используется для построения филогенетического дерева.
Метод попарного внутригруппового невзвешенного среднего ( unweighted pair group method with arithmetic mean , UPGMA ) считается одним из самых простых. В нынешнем виде метод был представлен в работе Sneath и Sokal 1973 года [ источник не указан 1422 дня ] . Первоначально использование в филогенетике связано с построением фенограмм по морфологическим признакам. Необходимым условием использования метода является постоянная скорость эволюции исследуемых нуклеотидных последовательностей. При неравномерной скорости эволюции последовательностей (несоответствие модели молекулярных часов) метод UPGMA может приводить к ошибкам в топологии дерева.
На первом этапе в матрице дистанций находят два таксона с наименьшим значением дистанции. Эти два таксона объединяются в один кластер (или составной таксон). Поскольку в рамках данного метода принимается равномерность скорости молекулярной эволюции , то точка ветвления (дивергенции) находится на половине от генетической дистанции между двумя этими таксонами. В дальнейшем этот кластер из двух таксонов считается единым целым. Матрица дистанций пересчитывается, при этом принимается, что расстояние между составным таксоном и остальными таксонами равно:
где d — генетическая дистанция, u — композитная последовательность, u 1 и u 2 — элементы композитной последовательности, k — таксоны не входящие в композитную последовательность
Затем снова выбираются два таксона имеющие наименьшую генетическую дистанцию, объединяются в кластер и строится новая матрица дистанций и так далее.
См. Метод присоединения соседей
Метод базируется на предположении, что наиболее вероятным будет дерево с наименьшим количеством эволюционных событий. Принципом данного метода является вычисление длин ветвей (которая отражает количество эволюционных событий) всех возможных топологий деревьев:
В качестве наилучшего, выбирается дерево с наименьшей длиной ветвей. Если для нескольких деревьев с разной топологией длины ветвей не имеют статистически значимых различий, то эти деревья рассматриваются как равновероятные.
|
Этот раздел
не завершён
.
|
См. Метод максимального правдоподобия
|
Этот раздел
не завершён
.
|
См. Байесовский подход в филогенетике
|
Этот раздел
не завершён
.
|
|
В статье
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|