Специальная унитарная группа
—
группа
унитарных матриц
заданного порядка с
определителем
, равным 1, и
произведением матриц
как групповой операцией; для матриц размером
n
×
n
{\displaystyle n\times n}
обозначается
S
U
(
n
)
{\displaystyle \mathrm {SU} (n)}
.
Специальная унитарная группа является
подгруппой
унитарной группы
U
(
n
)
{\displaystyle \mathrm {U} (n)}
, состоящей из всех унитарных матриц
n
×
n
{\displaystyle n\times n}
:
SU
(
n
)
⊂
U
(
n
)
⊂
GL
(
n
,
C
)
{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} )}
.
Группа
S
U
(
n
)
{\displaystyle \mathrm {SU} (n)}
имеет
(
n
2
−
1
)
{\displaystyle (n^{2}-1)}
параметр, так как матрица
n
×
n
{\displaystyle n\times n}
содержит
n
2
{\displaystyle n^{2}}
чисел, но одно из них не является независимым и определяется из условия равенства определителя единице. Соответственно, количество генераторов тоже равно
(
n
2
−
1
)
{\displaystyle (n^{2}-1)}
.
Генераторы
SU(2)
Для группы
S
U
(
2
)
{\displaystyle \mathrm {SU} (2)}
генераторы
известны как
матрицы Паули
:
00
σ
1
=
(
0
1
1
0
)
{\displaystyle \sigma _{1}={\begin{pmatrix}0&1\\1&0\end{pmatrix}}}
σ
2
=
(
0
−
i
i
0
)
{\displaystyle \sigma _{2}={\begin{pmatrix}0&-i\\i&0\end{pmatrix}}}
σ
3
=
(
1
0
0
−
1
)
{\displaystyle \sigma _{3}={\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}
SU(3)
Аналогом матриц Паули для
S
U
(
3
)
{\displaystyle \mathrm {SU} (3)}
служат
матрицы Гелл-Манна
:
00
λ
1
=
(
0
1
0
1
0
0
0
0
0
)
{\displaystyle \lambda _{1}={\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}}}
λ
2
=
(
0
−
i
0
i
0
0
0
0
0
)
{\displaystyle \lambda _{2}={\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}}}
λ
3
=
(
1
0
0
0
−
1
0
0
0
0
)
{\displaystyle \lambda _{3}={\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}}}
00
λ
4
=
(
0
0
1
0
0
0
1
0
0
)
{\displaystyle \lambda _{4}={\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix}}}
λ
5
=
(
0
0
−
i
0
0
0
i
0
0
)
{\displaystyle \lambda _{5}={\begin{pmatrix}0&0&-i\\0&0&0\\i&0&0\end{pmatrix}}}
λ
6
=
(
0
0
0
0
0
1
0
1
0
)
{\displaystyle \lambda _{6}={\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}}}
00
λ
7
=
(
0
0
0
0
0
−
i
0
i
0
)
{\displaystyle \lambda _{7}={\begin{pmatrix}0&0&0\\0&0&-i\\0&i&0\end{pmatrix}}}
λ
8
=
1
3
(
1
0
0
0
1
0
0
0
−
2
)
{\displaystyle \lambda _{8}={\frac {1}{\sqrt {3}}}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&-2\end{pmatrix}}}
Генераторы для
S
U
(
3
)
{\displaystyle \mathrm {SU} (3)}
определяются как
T
{\displaystyle T}
с использованием соотношения:
T
a
=
λ
a
2
{\displaystyle T_{a}={\frac {\lambda _{a}}{2}}}
.
Они подчиняются следующим соотношениям:
[
T
a
,
T
b
]
=
i
∑
c
=
1
8
f
a
b
c
T
c
{\displaystyle \left[T_{a},T_{b}\right]=i\sum _{c=1}^{8}{f_{abc}T_{c}}}
, где
f
{\displaystyle f}
—
структурная константа
, значения которой равны:
f
123
=
1
{\displaystyle f_{123}=1}
,
f
147
=
f
165
=
f
246
=
f
257
=
f
345
=
f
376
=
1
2
{\displaystyle f_{147}=f_{165}=f_{246}=f_{257}=f_{345}=f_{376}={\frac {1}{2}}}
,
f
458
=
f
678
=
3
2
{\displaystyle f_{458}=f_{678}={\frac {\sqrt {3}}{2}}}
;
tr
(
T
a
)
=
0
{\displaystyle \operatorname {tr} (T_{a})=0}
.
SU(4)
Эрмитовы матрицы генераторы для
S
U
(
4
)
{\displaystyle \mathrm {SU} (4)}
, аналогичные
матрицам Паули
и
матрицам Гелл-Манна
, имеют вид:
00
λ
1
=
(
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
)
{\displaystyle \lambda _{1}={\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}}}
λ
2
=
(
0
−
i
0
0
i
0
0
0
0
0
0
0
0
0
0
0
)
{\displaystyle \lambda _{2}={\begin{pmatrix}0&-i&0&0\\i&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}}}
λ
3
=
(
1
0
0
0
0
−
1
0
0
0
0
0
0
0
0
0
0
)
{\displaystyle \lambda _{3}={\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}}}
00
λ
4
=
(
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
)
{\displaystyle \lambda _{4}={\begin{pmatrix}0&0&1&0\\0&0&0&0\\1&0&0&0\\0&0&0&0\end{pmatrix}}}
λ
5
=
(
0
0
−
i
0
0
0
0
0
i
0
0
0
0
0
0
0
)
{\displaystyle \lambda _{5}={\begin{pmatrix}0&0&-i&0\\0&0&0&0\\i&0&0&0\\0&0&0&0\end{pmatrix}}}
λ
6
=
(
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
)
{\displaystyle \lambda _{6}={\begin{pmatrix}0&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&0\end{pmatrix}}}
00
λ
7
=
(
0
0
0
0
0
0
−
i
0
0
i
0
0
0
0
0
0
)
{\displaystyle \lambda _{7}={\begin{pmatrix}0&0&0&0\\0&0&-i&0\\0&i&0&0\\0&0&0&0\end{pmatrix}}}
λ
8
=
1
3
(
1
0
0
0
0
1
0
0
0
0
−
2
0
0
0
0
0
)
{\displaystyle \lambda _{8}={\frac {1}{\sqrt {3}}}{\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&-2&0\\0&0&0&0\end{pmatrix}}}
λ
9
=
(
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
)
{\displaystyle \lambda _{9}={\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&0\end{pmatrix}}}
00
λ
10
=
(
0
0
0
−
i
0
0
0
0
0
0
0
0
i
0
0
0
)
{\displaystyle \lambda _{10}={\begin{pmatrix}0&0&0&-i\\0&0&0&0\\0&0&0&0\\i&0&0&0\end{pmatrix}}}
λ
11
=
(
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
)
{\displaystyle \lambda _{11}={\begin{pmatrix}0&0&0&0\\0&0&0&1\\0&0&0&0\\0&1&0&0\end{pmatrix}}}
λ
12
=
(
0
0
0
0
0
0
0
−
i
0
0
0
0
0
i
0
0
)
{\displaystyle \lambda _{12}={\begin{pmatrix}0&0&0&0\\0&0&0&-i\\0&0&0&0\\0&i&0&0\end{pmatrix}}}
00
λ
13
=
(
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
)
{\displaystyle \lambda _{13}={\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}}
λ
14
=
(
0
0
0
0
0
0
0
0
0
0
0
−
i
0
0
i
0
)
{\displaystyle \lambda _{14}={\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&0&0&-i\\0&0&i&0\end{pmatrix}}}
λ
15
=
1
6
(
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
−
3
)
{\displaystyle \lambda _{15}={\frac {1}{\sqrt {6}}}{\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-3\end{pmatrix}}}
Эти матрицы удовлетворяют выражению для
следа
:
T
r
(
λ
k
2
)
=
2
;
k
=
1..15
{\displaystyle Tr{(\lambda _{k}^{2})}=2;k=1..15}
и
тождеству Якоби
:
[
[
λ
l
,
λ
k
]
,
λ
j
]
+
[
[
λ
k
,
λ
j
]
,
λ
l
]
+
[
[
λ
j
,
λ
l
]
,
λ
k
]
=
0
;
j
<
k
<
l
;
j
,
k
,
l
=
1..15
{\displaystyle [[\lambda _{l},\lambda _{k}],\lambda _{j}]+[[\lambda _{k},\lambda _{j}],\lambda _{l}]+[[\lambda _{j},\lambda _{l}],\lambda _{k}]=0;j<k<l;j,k,l=1..15}
При этом
коммутатор
вычисляется как:
[
λ
j
,
λ
k
]
=
2
i
∑
m
f
j
k
l
λ
l
{\displaystyle [\lambda _{j},\lambda _{k}]=2i\sum _{m}f_{jkl}\lambda _{l}}
Таблица структурных констант
f
j
k
l
{\displaystyle f_{jkl}}
f
1
,
2
,
3
=
1
{\displaystyle f_{1,2,3}=1}
f
1
,
4
,
7
=
f
2
,
4
,
6
=
f
2
,
5
,
7
=
f
3
,
4
,
5
=
f
1
,
9
,
12
=
f
2
,
9
,
11
=
f
2
,
10
,
12
=
f
3
,
9
,
10
=
f
4
,
9
,
14
=
f
5
,
10
,
14
=
f
6
,
11
,
14
=
f
7
,
11
,
13
=
f
7
,
12
,
14
=
1
2
{\displaystyle f_{1,4,7}=f_{2,4,6}=f_{2,5,7}=f_{3,4,5}=f_{1,9,12}=f_{2,9,11}=f_{2,10,12}=f_{3,9,10}=f_{4,9,14}=f_{5,10,14}=f_{6,11,14}=f_{7,11,13}=f_{7,12,14}={\frac {1}{2}}}
f
1
,
5
,
6
=
f
3
,
6
,
7
=
f
1
,
10
,
11
=
f
3
,
11
,
12
=
f
4
,
10
,
13
=
f
6
,
12
,
13
=
−
1
2
{\displaystyle f_{1,5,6}=f_{3,6,7}=f_{1,10,11}=f_{3,11,12}=f_{4,10,13}=f_{6,12,13}=-{\frac {1}{2}}}
f
4
,
5
,
8
=
f
6
,
7
,
8
=
f
8
,
9
,
10
=
f
8
,
11
,
12
=
f
9
,
10
,
15
=
f
11
,
12
,
15
=
f
13
,
14
,
15
=
3
2
{\displaystyle f_{4,5,8}=f_{6,7,8}=f_{8,9,10}=f_{8,11,12}=f_{9,10,15}=f_{11,12,15}=f_{13,14,15}={\frac {\sqrt {3}}{2}}}
f
8
,
13
,
14
=
−
3
2
{\displaystyle f_{8,13,14}=-{\frac {\sqrt {3}}{2}}}
Литература
Halzen, Francis; Martin, Alan.
(англ.)
. —
John Wiley & Sons
, 1984. —
ISBN 0-471-88741-2
.
Займан Дж.
Современная квантовая теория. — М.: Мир, 1971. — 288 с.
Исаев А. П.,
Рубаков В. А.
Теория групп и симметрий. Конечные группы. Группы и алгебры Ли. —
М.
: УРСС, 2018. — 491 с.
Ссылки
См. также