Interested Article - Показатели центра распределения

Для определения средних или наиболее типичных значений совокупности используются показатели центра распределения . Основные из них — математическое ожидание , среднее арифметическое , среднее геометрическое , среднее гармоническое , среднее степенное , взвешенные средние , , медиана , мода .

Расчёт средних величин производится разными способами, и, соответственно, применение их тоже зависит от исследуемой совокупности.

У симметричного одномерного унимодального распределения математическое ожидание, медиана и мода одинаковы.

Математическое ожидание

.

В зарубежной литературе применяется обозначение .

В случае дискретной величины и постоянной плотности применяется выборочное среднее :

.

Преимущества: если эксперимент повторяется многократно, а результаты суммируются (например, в страховании , азартных играх ), математическое ожидание — естественный выбор.

Недостатки: не соответствует интуитивному пониманию «среднего»; меньшинство с аномальными значениями (долгожители, миллиардеры, бракованные изделия и т. д.) серьёзно смещают матожидание. В статистических расчётах рекомендуется отбрасывать такой «хвост» .

Медиана

У одномерного распределения медиана — квантиль уровня 0,5. Иными словами, медиана — это такое число , что или .

Преимущества: Медиана согласуется с интуитивным пониманием «среднего». К тому же, даже очень «дикие» выбросы изменяют медиану незначительно. Например, если к сотне бедняков (доходы равномерно распределены от 0 до 1 $) добавить одного миллиардера (1 млрд $), среднее сместится от 0,5 $ до 10 млн $, в то время как медиана — от 0,5 $ до 0,505. Монотонная функция не изменяет медиану — для любой монотонной будет выполняться .

Недостатки: плохо работает для многомерных распределений со сложной взаимосвязью компонентов. Сложна в расчёте.

Мода

Мода — точка, в которой плотность распределения имеет локальный максимум. Распределение может иметь несколько мод.

Преимущества: позволяет работать с данными нечисловой природы.

Недостаток: не учитывает поведение распределения в других точках.

Источник —

Same as Показатели центра распределения