Interested Article - Сцинтилляторы
- 2021-03-20
- 1
Сцинтилля́торы — вещества, проявляющие сцинтилляцию , то есть излучающие свет при поглощении ионизирующего излучения ( гамма-квантов , электронов , альфа-частиц и т.д.). Как правило, излучаемое количество фотонов для данного типа излучения приближённо пропорционально поглощённой энергии, что позволяет получать энергетические спектры излучения.
Сцинтилляционные детекторы ядерных излучений — основное применение сцинтилляторов. В сцинтилляционном детекторе свет, излученный при сцинтилляции, собирается на фотоприёмнике (как правило, это фотокатод фотоэлектронного умножителя — ФЭУ , значительно реже используются фотодиоды и другие фотоприёмники), преобразуется в импульс тока, усиливается и записывается той или иной регистрирующей системой .
Характеристики сцинтилляторов
Световыход
Световыход — количество фотонов, излучаемых сцинтиллятором при поглощении определённого количества энергии (обычно 1 МэВ ). Большим световыходом считается величина 50—70 тыс. фотонов на МэВ. Чем выше световыход, тем более чувствителен сцинтиллятор, поэтому стремятся применять сцинтилляторы с большим световыходом. Однако для детектирования высокоэнергичных частиц могут использоваться и сцинтилляторы со значительно меньшим световыходом (например, вольфрамат свинца ).
Спектр высвечивания
Спектр высвечивания должен быть по возможности оптимально согласован со спектральной чувствительностью используемого фотоприёмника. Несогласованность по спектру с фотоприёмником негативно сказывается на энергетическом разрешении.
Энергетическое разрешение
Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:
- со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- с различной вероятностью доставки фотона к фотоприёмнику из разных точек сцинтиллятора,
- с разбросом высвечиваемого числа фотонов.
В результате в статистически накопленном энергетическом спектре линия (которая для идеального детектора представляла бы дельта-функцию ) оказывается размытой, её часто можно представить в виде гауссианы с дисперсией σ 2 . В качестве характеристики энергетического разрешения детектора используются среднеквадратическое отклонение σ ( квадратный корень из дисперсии) и, чаще, полная ширина линии на половине высоты (FWHM, от англ. Full Width on Half Maximum ; иногда называется полушириной ), отнесённые к медиане линии и выраженные в процентах. FWHM гауссианы в раза больше σ . Поскольку энергетическое разрешение зависит от энергии (как правило, оно пропорционально E −1/2 ), его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии цезия-137 ( 661,7 кэВ ).
Время высвечивания
Время, в течение которого поглощённая в сцинтилляторе, возбуждённого прохождением быстрой заряженной частицы энергия преобразуется в световое излучение, называют временем высвечивания. Зависимость высвечивания сцинтилляторов от времени с момента поглощения частицы (кривая высвечивания) обычно может быть представлена как убывающая экспонента или, в общем случае, как сумма нескольких убывающих экспонент:
Слагаемое в формуле с наибольшей амплитудой и постоянной времени характеризует общее время высвечивания сцинтиллятора. Почти все сцинтилляторы после быстрого высвечивания имеют медленно спадающий «хвост» послесвечения, что зачастую является недостатком, с точки зрения временного разрешения, скорости счёта регистрируемых частиц.
Обычно сумму многих экспонент в приведённой формуле с достаточной для практики точностью можно представить в виде суммы двух экспонент:
- где — постоянная времени «быстрого» высвечивания,
- — постоянная времени «медленного» высвечивания,
- — амплитуды свечения и послесвечения соответственно.
Амплитуды свечения и послесвечения зависят от энергии, поглощённой в сцинтилляторе, ионизирующей способности быстрых частиц и гамма-квантов. Например, в сцинтилляторах изготовленных из легированного фторида бария амплитуда свечения, вызванного поглощением гамма-кванта существенно превышает амплитуду свечения, вызванного поглощением альфа-частицы , при поглощении которой наоборот, превалирует амплитуда послесвечения. Это явление позволяет различать природу ионизирующего излучения.
Типичное время высвечивания неорганических сцинтилляторов — от сотен наносекунд до десятков микросекунд. Органические сцинтилляторы (пластиковые и жидкие) высвечиваются в течение наносекунд.
Радиационная прочность
Облучаемые сцинтилляторы постепенно деградируют. Доза облучения, которую может выдержать сцинтиллятор без существенного ухудшения свойств, называется радиационной прочностью.
Квенчинг-фактор
Частицы разной природы, но с одинаковой энергией при поглощении в сцинтилляторе дают, вообще говоря, различный световыход. Частицы с высокой плотностью ионизации ( протоны , альфа-частицы, тяжёлые ионы , осколки деления) дают в большинстве сцинтилляторов меньшее количество фотонов, чем гамма-кванты, бета-частицы , мюоны или рентген . Отношение световыхода данного типа частиц к световыходу гамма-квантов с равной энергией называется квенчинг-фактором (от англ. quenching — «тушение»). Квенчинг-фактор электронов (бета-частиц) обычно близок к единице. Квенчинг-фактор для альфа-частиц называют α/β -отношением; для многих органических сцинтилляторов он близок к 0,1.
Время
высвечивания, мкс |
Максимум
спектра высвечивания, нм |
Коэффициент
эффективности (по отношению к антрацену ) |
Примечание | |
---|---|---|---|---|
NaI ( Tl ) |
0,25
|
410
|
2,0
|
гигроскопичен |
CsI ( Tl ) |
0,5
|
560
|
0,6
|
фосфоресценция |
LiI ( Sn ) |
1,2
|
450
|
0,2
|
очень
гигроскопичен |
LiI ( Eu ) |
очень
гигроскопичен |
|||
ZnS ( Ag ) |
1,0
|
450
|
2,0
|
порошок |
CdS ( Ag ) |
1,0
|
760
|
2,0
|
небольшие
монокристаллы |
Неорганические сцинтилляторы
Чаще всего в качестве сцинтилляторов используются неорганические монокристаллы. Иногда для увеличения световыхода кристалл легируют активатором (или так называемым допантом). Так, в сцинтилляторе NaI(Tl) в кристаллической матрице иодида натрия содержатся активирующие центры таллия (примесь на уровне сотых долей процента). Сцинтилляторы, которые светятся без активатора, называются собственными .
Неорганические керамические сцинтилляторы
Прозрачные керамические сцинтилляторы получают из прозрачных керамических материалов на базе оксидов Al 2 O 3 (Лукалокс), Y 2 O 3 (Иттралокс) и производных оксидов Y 3 Al 5 O 12 и YAlO 3 , а также MgO, BeO .
Органические сцинтилляторы
эмиссии [нм] |
Время
высвечивания [нс] |
Световыход
(относительно NaI) |
|
---|---|---|---|
Нафталин |
348
|
96
|
0,12
|
Антрацен |
440
|
30
|
0,5
|
Паратерфенил |
440
|
5
|
0,25
|
Органические сцинтилляторы обычно представляют собой двух- или трёхкомпонентные смеси . Первичные центры флуоресценции возбуждаются за счёт возбуждения налетающими частицами. При распаде этих возбуждённых состояний излучается свет в ультрафиолетовом диапазоне длин волн . Длина поглощения этого ультрафиолетового света, однако, весьма мала: центры флуоресценции непрозрачны для их собственного излученного света.
Вывод света осуществляется добавлением к сцинтиллятору второго компонента, поглощающего первично излученный ультрафиолетовый свет и переизлучающего его изотропно с бо́льшими длинами волн (так называемого сместителя спектра, или шифтера ).
Две активных компоненты в органических сцинтилляторах или растворяются в органической жидкости или смешиваются с органическим материалом так, чтобы образовать полимерную структуру. По такой технологии можно производить жидкий или пластмассовый сцинтиллятор любой геометрической формы и размера. В большинстве случаев изготавливаются листы сцинтиллятора толщиной от 1 до 30 мм.
Органические сцинтилляторы имеют гораздо меньшие времена высвечивания (порядка единиц — десятков наносекунд) по сравнению с неорганическими, но имеют меньший .
Также существуют другие органические сцинтилляторы, например американской компании . Сцинтилляторы Bicron BC 400…416 производятся на основе .
Газовые сцинтилляторы
Газовые сцинтилляционные счетчики используют свет, излученный атомами, которые возбуждаются в процессе взаимодействия с ними заряженных частиц и затем возвращаются в основное состояние. Времена жизни возбужденных уровней лежат в наносекундном диапазоне. Световыход в газовых сцинтилляторах в силу низкой плотности газов сравнительно невысок. Однако в качестве газовых сцинтилляторов могут также применяться сжиженные инертные газы.
|
Этот раздел
не завершён
.
|
Жидкие сцинтилляторы
|
Этот раздел
не завершён
.
|
См. также
Примечания
- Детекторы ядерных излучений — статья из Большой советской энциклопедии .
- В некоторых случаях линии в спектре сцинтиллятора могут сильно отличаются от гауссианы, например, несимметричностью.
- . Дата обращения: 11 марта 2009. 29 мая 2008 года.
- Перкинс Д. Введение в физику высоких энергий. — М., Мир , 1975. — с. 71—73
- от 8 декабря 2008 на Wayback Machine (англ.)
- от 15 марта 2008 на Wayback Machine (англ.)
- 2021-03-20
- 1