Коричневый карлик
- 1 year ago
- 0
- 0
Кра́сный ка́рлик — согласно диаграмме Герцшпрунга — Рассела , маленькая и относительно холодная звезда главной последовательности , имеющая спектральный класс М или поздний К. Являются очень распространёнными звёздами, особенно в старых шаровых скоплениях типа M3 , галактическом гало . Распределение красных карликов в Галактике сферическое, в отличие от сильно излучающих её рукавов, светимость которых обусловлена яркими молодыми звёздами и переизлучением от газовых скоплений.
Красные карлики довольно сильно отличаются от других звёзд. Масса красных карликов не превышает трети солнечной массы (нижний предел массы или предел Кумара — 0,0767 при обычном содержании тяжёлых элементов M ☉ , затем идут коричневые карлики ). Температура фотосферы красного карлика может достигать 3500 К , что превышает температуру спирали лампы накаливания , поэтому, вопреки своему названию, красные карлики, аналогично лампам, испускают свет не красного, а скорее охристо -желтоватого оттенка. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше чем Солнце. Из-за низкой скорости термоядерного сгорания водорода красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет) . В недрах красных карликов невозможны термоядерные реакции с участием гелия , поэтому они не могут превратиться в красные гиганты . Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива, и постепенно превращаются в голубые карлики , а затем — в белые карлики с гелиевым ядром. Но с момента Большого взрыва прошло ещё недостаточно времени, чтобы красные карлики смогли сойти с главной последовательности .
Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы, при которой звёзды вынуждены сойти с главной последовательности.
Спектральный класс | Радиус | Масса | Светимость | Температура | Типичные представители |
---|---|---|---|---|---|
R/R ☉ | M/M ☉ | L/L ☉ | K | ||
M0 | 0,64 | 0,47 | 0,075 | 3850 | GJ 278C |
M1 | 0,49 | 0,49 | 0,035 | 3600 | GJ 229A |
M2 | 0,44 | 0,44 | 0,023 | 3400 | Лаланд 21185 |
M3 | 0,39 | 0,36 | 0,015 | 3250 | GJ 725A |
M4 | 0,26 | 0,20 | 0,0055 | 3100 | Звезда Барнарда |
M5 | 0,20 | 0,14 | 0,0022 | 2800 | GJ 866AB |
M6 | 0,15 | 0,10 | 0,0009 | 2600 | Вольф 359 |
M7 | 0,12 | 0,09 | 0,0006 | 2500 | Ван Бисбрук 8 |
M8 | 0,11 | 0,08 | 0,0003 | 2400 | Ван Бисбрук 9 |
M9 | 0,08 | 0,079 | 0,00015 | 2300 | LHS 2924 |
M9.5 | 0,08 | 0,075 | 0,0001 | 2250 | DENIS-P J0021.0–4244 |
Почти все звёзды, видимые невооружённым глазом, — белые или голубые, поэтому можно подумать, что красные карлики распространены мало. Но в действительности они представляют собой самые распространённые объекты звёздного типа во Вселенной . Суть в том, что слабые звёзды на расстоянии просто не видны. Проксима Центавра , ближайшая к Солнцу звезда, — красный карлик (спектральный класс M5,5Ve; звёздная величина 11,0 m ), как и двадцать из следующих тридцати ближайших звёзд. Однако из-за их низкой яркости они мало изучены.
Одна из загадок астрономии — слишком малое количество красных карликов, совсем не содержащих металлов. Согласно модели Большого взрыва , первое поколение звёзд должно было содержать только лишь водород и гелий (и совсем небольшое количество лития). Если в числе этих звёзд были красные карлики, то они должны наблюдаться сегодня, чего не происходит. Общепринятое объяснение заключается в том, что звезды с малой массой не могут сформироваться без тяжёлых элементов. Так как в лёгких звёздах протекают термоядерные реакции с участием водорода в присутствии металлов, то ранняя протозвезда с малой массой, лишённая металлов, не в состоянии «зажечься» и вынуждена оставаться газовым облаком до тех пор, пока не получит больше материи. Всё это служит поддержкой теории, согласно которой первые звёзды были очень массивными и вскоре погибли, выбросив большое количество металлов, необходимых для формирования лёгких звёзд.
Термоядерные реакции красных карликов «экономны»: нуклеосинтез в недрах этих звёзд проходит медленно. Это объясняется сильной зависимостью скорости протекания термоядерных реакций (примерно в четвёртой степени) от температуры, которая низка у звёзд малой массы. Поэтому жизненный цикл красных карликов в сотни раз длиннее, чем у желтых карликов (Солнца в частности). Если на какой-нибудь планете возле красного карлика возникла простейшая жизнь, то вероятность, что она разовьётся во что-нибудь интересное, несравненно выше, чем у таких сравнительно недолговечных звёзд, как Солнце. Это связано с тем, что для развития высокоорганизованной жизни требуются миллиарды лет. [ источник не указан 2134 дня ]
В 2005 году были обнаружены экзопланеты , обращающиеся вокруг красных карликов. По размеру одна из них сопоставима с Нептуном (около 17 масс Земли). Эта планета обращается на расстоянии всего в 6 миллионов километров от звезды (0,04 а.е. ), и поэтому должна иметь температуру поверхности около 150 ° C , несмотря на низкую светимость звезды. В 2006 году была обнаружена планета земного типа. Она обращается вокруг красного карлика на расстоянии в 390 миллионов километров (2,6 а.е. ) и температура её поверхности составляет −220 °C. В 2007 году были обнаружены планеты в обитаемой зоне красного карлика Глизе 581 , в 2010 году обнаружена планета в обитаемой зоне у Глизе 876 . В 2014 году обнаружена землеразмерная планета Kepler-186f в обитаемой зоне . 22 февраля 2017 года было объявлено об обнаружении семи планет земного типа около красного карлика TRAPPIST-1 . Три из них находятся в обитаемой зоне .
Поскольку красные карлики довольно тусклые, то эффективная земная орбита должна быть близкой к звезде. Но планета, расположенная слишком близко к звезде, становится постоянно обращённой к ней одной стороной . Данное явление называется приливным захватом . Оно может вызвать разницу температур в разных полушариях (ночном и дневном), поскольку на дневном полушарии всегда тепло (может быть — очень жарко), а на ночном температура может приближаться к абсолютному нулю . Плотная атмосфера , однако, могла бы обеспечить некоторый перенос тепла на теневое полушарие, но это, в свою очередь, вызовет сильные ветры.
Красные карлики во много крат активнее Солнца ( звёздный ветер таких звёзд ненамного слабее, чем у Солнца). Очень мощные солнечные вспышки в системе красного карлика могут быть губительными для возможной жизни на планете. Магнитное поле планеты могло бы отчасти решить эту проблему, становясь барьером для радиации , но у планет с приливным захватом его в большинстве случаев быть не может, т. к. отсутствие вращения планеты означает также отсутствие вращения ядра. Впрочем, роль магнитосферы в защите от космической радиации долгое время оставалась переоценённой, и защитного свойства одной лишь атмосферы могло бы оказаться достаточно .
{{
cite arXiv
}}
:
|class=
игнорируется (
справка
)
;
Неизвестный параметр
|accessdate=
игнорируется (
справка
)
;
Шаблон цитирования имеет пустые неизвестные параметры:
|version=
(
справка
)
(англ.)
(По поводу срока пребывания на главной последовательности: См. С. 5. — формула (2.1a):
, где для звёзд малой массы берётся значение α ≈ 3 — 4. Если брать значение α = 3, то красный карлик с массой в 0,1
M
⊙
будет гореть
1⋅10
13
лет
. Если брать значение α = 4 , а массу красного карлика
M
*
= 0,0767
M
⊙
, то такой красный карлик горел бы
2,9⋅10
14
лет
.)
{{
cite news
}}
:
Неизвестный параметр
|deadlink=
игнорируется (
|url-status=
предлагается) (
справка
)