Закон Гука
- 1 year ago
- 0
- 0
Зако́н Ха́ббла (или закон Хаббла — Леметра , закон всеобщего разбегания галактик) — космологический закон, описывающий расширение Вселенной . В статьях и научной литературе в зависимости от её специализации и даты публикаций он формулируется по-разному .
Классическое определение:
где — скорость галактики, — расстояние до неё, а — коэффициент пропорциональности, сегодня называемый постоянной Хаббла .
Однако в современных работах наблюдателей эта зависимость принимает вид
где с — скорость света, а z — красное смещение . Также, последнее является стандартным обозначением расстояния во всех современных космологических работах.
Третий вид закона Хаббла можно встретить в теоретических публикациях:
где — масштабный фактор, зависящий только от времени, — его производная по времени.
Закон Хаббла является одним из основных наблюдаемых фактов в космологии . С его помощью можно примерно оценить время расширения Вселенной (так называемый Хаббловский возраст Вселенной ):
Эта величина с точностью до численного множителя порядка единицы соответствует возрасту Вселенной, рассчитываемому по стандартной космологической модели Фридмана .
В 1913—1914 годах американский астроном Весто Слайфер установил, что Туманность Андромеды и ещё более десятка небесных объектов движутся относительно Солнечной системы с огромными скоростями (порядка 1000 км/с). Это означало, что все они находятся за пределами Галактики (ранее многие астрономы полагали, что туманности представляют собой формирующиеся в нашей Галактике планетные системы). Другой важный результат: все исследованные Слайфером туманности, кроме трёх, удалялись от Солнечной системы. В 1917—1922 годах Слайфер получил дополнительные данные, подтвердившие, что скорость почти всех внегалактических туманностей направлена прочь от Солнца. Артур Эддингтон на основе обсуждавшихся в те годы космологических моделей Общей теории относительности предположил, что этот факт отражает общий природный закон: Вселенная расширяется , и чем дальше от нас астрономический объект, тем больше его относительная скорость.
Вид закона для расширения Вселенной был установлен экспериментально для галактик бельгийским учёным Жоржем Леметром в 1927 году , а позже — знаменитым Э. Хабблом в 1929 году с помощью 100-дюймового (254 см) телескопа обсерватории Маунт-Вилсон , который позволил разрешить ближайшие галактики на звезды. Среди них были цефеиды , используя зависимость «период — светимость» которых, Хаббл измерил расстояние до них, а также красное смещение галактик, позволяющее определить их радиальную скорость.
Полученный Хабблом коэффициент пропорциональности составлял около 500 км/с на мега парсек . Современное значение составляет по разным оценкам 74,03 ± 1,42 (км/с)/Мпк или 67,4 ± 0,5 (км/с)/Мпк . Столь существенное отличие от результатов Э. Хаббла обеспечивают два фактора: отсутствие поправки нуль-пункта зависимости «период — светимость» на поглощение (которое тогда ещё не было открыто) и существенный вклад собственных скоростей в общую скорость для местной группы галактик .
Современное объяснение наблюдений даётся в рамках Вселенной Фридмана. Допустим есть источник, расположенный в сопутствующей системе на расстоянии r 1 от наблюдателя. Приёмная аппаратура наблюдателя регистрирует фазу приходящей волны. Рассмотрим два интервала между точками с одной и той же фазой :
С другой стороны, для световой волны в принятой метрике выполняется равенство
Проинтегрировав это уравнение, получим
Учитывая что в сопутствующих координатах r не зависит от времени, а также малость длины волны относительно радиуса кривизны Вселенной, получим соотношение
Если теперь его подставить в первоначальное соотношение, то
Разложим a ( t ) в ряд Тейлора с центром в точке a ( t 1 ) и учтём члены только первого порядка:
После приведения членов и домножения на c :
Соответственно, константа Хаббла
В процессе расширения, если оно происходит равномерно, постоянная Хаббла должна уменьшаться, и индекс «0» при её обозначении указывает на то, что величина Н 0 относится к современной эпохе. Величина, обратная постоянной Хаббла, должна быть в таком случае равна времени, прошедшему с момента начала расширения, то есть возрасту Вселенной .
Значение Н 0 определяется по наблюдениям галактик, расстояния до которых измерены без помощи красного смещения (прежде всего, по ярчайшим звёздам или цефеидам ). Большинство независимых оценок Н 0 дают для этого параметра значение 66—78 км/с на мегапарсек . Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек , удаляются от нас со скоростью 6600—7800 км/с . В настоящее время (2019 год) значения, полученные путём вычисления расстояний до галактик по светимости наблюдающихся в них цефеид на космическом телескопе Хаббла , дают оценку 74,03 ± 1,42 (км/c)/Мпк , а значения, полученные с помощью измерения параметров реликтового излучения на космической обсерватории «Планк» , показали значение 67,4 ± 0,5 (км/c)/Мпк по состоянию на 2018 год.
Проблема оценки Н 0 осложняется тем, что, помимо космологических скоростей, обусловленных расширением Вселенной, галактики ещё обладают собственными (пекулярными) скоростями, которые могут составлять несколько сотен км/с (для членов массивных скоплений галактик — более 1000 км/с ). Это приводит к тому, что закон Хаббла плохо выполняется или совсем не выполняется для объектов, находящихся на расстоянии ближе 10—15 млн св. лет , то есть как раз для тех галактик, расстояния до которых наиболее надёжно определяются без красного смещения.
С другой стороны, если подставить в формулу красного смещения время, равное одному периоду колебания фотона то получим, что постоянная Хаббла — это величина, на которую уменьшается частота фотона за один период колебания вне зависимости от длины волны , и чтобы определить, насколько уменьшилась частота фотона, надо постоянную Хаббла умножить на число совершённых колебаний:
Линейный закон роста скорости расширения с расстоянием наблюдается также для многих планетарных туманностей (так называемый Hubble-like flow) .