Interested Article - Кривизна римановых многообразий

Слева направо: поверхности отрицательной, нулевой и положительной гауссовой кривизны .

Кривизна римановых многообразий численно характеризует отличие римановой метрики многообразия от евклидовой в данной точке.

В случае поверхности кривизна в точке полностью описывается гауссовой кривизной .

В размерностях 3 и выше кривизна не может быть полностью охарактеризована одним числом в заданной точке, вместо этого она определяется как тензор .

Способы выражения кривизны

Тензор кривизны

Кривизна риманова многообразия может быть описана различными способами. Наиболее стандартным является тензор кривизны, заданный через связность Леви-Чивиты (или ковариантное дифференцирование ) и скобку Ли по следующей формуле:

Тензор кривизны представляет собой линейное преобразование касательного пространства к многообразию в выбранной точке.

Если и , то есть они являются координатными векторами, то , и поэтому формула упрощается:

то есть тензор кривизны измеряет некоммутативность ковариантных производных по векторам.

Линейное преобразование также называют преобразованием кривизны .

NB. Есть несколько книг, где тензор кривизны определяется с противоположным знаком.

Симметрии и тождества

Тензор кривизны обладает следующими симметриями:

Последнее тождество было найдено Риччи , но часто его называют первым тождеством Бьянки , потому что оно похоже на тождество Бьянки , описанное .

Эти три тождества образуют полный список симметрий тензора кривизны, то есть если какой-то тензор удовлетворяет этим тождествам, то можно найти риманово многообразие с таким тензором кривизны в некоторой точке. Простые расчёты показывают, что такой тензор имеет независимых компонент.

Ещё одно полезное тождество вытекает из этих трёх:

Тождество Бьянки (часто называемое вторым тождеством Бьянки ) содержит ковариантные производные:

Вместе с основными симметриями, это тождество даёт полный список симметрий тензора . Более того, если пара тензоров 4-валентный и 5-валентный удовлетворяют всем этим тождествам, то можно найти риманово многообразие тензором кривизны и его ковариантной производной в некоторой точке. Обобщение на старшие производные доказали Ковальски и Бергер.

Секционная кривизна

Секционная кривизна является ещё одним эквивалентным описанием кривизны римановых многообразий с более геометрическим описанием.

Секционная кривизна — это функция , которая зависит от секционного направления в точке (то есть двумерной плоскости в касательном пространстве в ). Она равна гауссовой кривизне поверхности, образованной экспоненциальным отображением, измеренной в точке .

Если — два линейно независимых вектора в , то

где

Следующая формула показывает, что секционная кривизна описывает тензор кривизны полностью:

Или в более простой форме, используя частные производные :

Форма кривизны

Форма связности задаёт альтернативный способ описания кривизны. Главным образом такой способ представления используется для общих векторных расслоений и для главных расслоений, но он прекрасно работает для касательного расслоения со связностью Леви-Чивита .

Кривизна в -мерном римановом многообразии задаётся антисимметричной -матрицей из 2-форм (или эквивалентно, 2-формой со значениями в , то есть в алгебре Ли из ортогональной группы , являющейся структурной группой касательного расслоения риманова многообразия).

Пусть будет локальным ортонормированным репером. Форма связности определяется антисимметричной матрицей из 1-форм , следующим тождеством

Тогда форма кривизны определяется как

Следующее равенство описывает связь между формой кривизны и тензором кривизны:

Этот подход автоматически включает все симметрии тензора кривизны, за исключением первого тождества Бьянки , которое принимает вид

где — это -вектор 1-форм, определённых как .

Второе тождество Бьянки принимает вид

обозначает внешнюю ковариантную производную.

Форма кривизны обобщается на главное расслоение со структурной группой Ли следующим образом:

где форма связности на , а — касательная алгебра Ли группы

Форма кривизны зануляется тогда и только тогда, когда связность локально плоска.

Оператор кривизны

Иногда удобно думать о кривизне, как об операторе на касательных бивекторах (элементах ), которые однозначно определяются следующим тождеством:

Это возможно из-за симметрий тензора кривизны (а именно, антисимметрии первой и последней пары индексов, и блок-симметрии этих пар).

Другие кривизны

В общем случае следующие тензоры и функции не описывают тензор кривизны полностью, однако они играют важную роль.

Скалярная кривизна

Скалярная кривизна является функцией на римановом многообразии, как правило, обозначается .

Это полный след тензора кривизны. Для ортонормированного базиса в касательное пространство в мы имеем

где обозначает тензор Риччи . Результат не зависит от выбора ортонормированного базиса.

Начиная с размерности 3, скалярная кривизна не описывает тензор кривизны полностью.

Кривизна Риччи

Кривизна Риччи является линейным оператором на касательном пространстве в точке, обычно обозначается . Для ортонормированного базиса в касательном пространстве в точке он определяется как

Результат не зависит от выбора ортонормированного базиса. В размерности четыре или более кривизна Риччи не описывает тензор кривизны полностью.

Явные выражения для тензора Риччи через связности Леви-Чивита даны в статье о символах Кристоффеля .

Тензор Вейля

Тензор Вейля имеет те же симметрии, что и тензор кривизны, плюс одну дополнительную: след (то же, что кривизна Риччи) равен 0.

В размерностях 2 и 3 тензор Вейля равен нулю, но если размерность > 3, тогда он может отличаться от нуля.

  • Тензор кривизны может быть разложена на части: одна будет зависеть от кривизны Риччи, другая — от тензора Вейля.
  • Конформная смена метрики не меняет тензор Вейля.
  • Для многообразия постоянной кривизны тензор Вейля равен нулю.
    • Кроме того, , тогда и только тогда, когда метрика является локально конформной евклидовой.

Разложение Риччи

Вместе тензор Риччи и тензор Вейля определяют тензор кривизны полностью.

Вычисление кривизны

Примечания

  1. Kowalski, Oldřich; Belger, Martin Riemannian metrics with the prescribed curvature tensor and all its covariant derivatives at one point. Math. Nachr. 168 (1994), 209–225.

Ссылки

  • Кобаяси Ш. , Номидзу К. Основы дифференциальной геометрии / пер. с англ. Л. В. Сабинина . — М. : Наука. Главная редакция физико-математической литературы , 1981. — Т. 1. — 344 с.
Источник —

Same as Кривизна римановых многообразий