Interested Article - Метрика кратчайшего пути

Метрика кратчайшего пути — метрика на вершинах графа равная числу рёбер в кратчайшем пути между даннымми вершинами. Если нет пути между двумя вершинами, то есть если они принадлежат различным компонентам связности , то принято считать расстояние бесконечным.

В случае ориентированных графов расстояние между двумя вершинами и определяется как длина кратчайшего пути из в , состоящий из дуг . В отличие от случая неориентированных графов может не совпадать с и даже может случиться, что одно расстояние существует, а другое — нет.

Основные определения

Метрическое пространство , определённое на множестве точек в терминах расстояния в графе, называется метрикой графа . Множество вершин (неориентированного графа) и функция расстояния образуют метрическое пространство в том и только в том случае, когда граф связен .

Эксцентриситетом вершины называется наибольшее геодезическое расстояние между и любой другой вершиной графа. То есть расстояние до самой дальней от вершины графа.

Радиусом графа называется минимальный эксцентриситет среди всех вершин графа

.

Диаметром графа называется максимальный эксцентриситет среди всех вершин графа. Таким образом, — это наибольшее расстояние между всеми парами вершин графа

Чтобы найти диаметр графа сначала находят кратчайшие пути между всеми парами вершин . Наибольшая длина кратчайшего пути есть диаметр графа.

Центральной вершиной графа радиусом называется вершина, эксцентриситет которой равен . То есть вершина, на которой достигается радиус

.

Периферийной вершиной графа диаметра называется вершина, эксцентриситет которой равен

.

Псевдопериферийной вершиной называется вершина, для которой любая вершина обладает свойством — если далека от насколько возможно, то далека от насколько возможно. Формально, вершина является псевдопериферийной, если для любой вершины с выполняется .

Разбиение вершин графа на подмножества по их расстоянию от заданной начальной вершины называется графа.

Алгоритм поиска псевдопериферийных вершин

Часто алгоритмам для разреженных матриц необходима начальная вершина с высоким эксцентриситетом. Лучше бы использовать периферийную вершину, но в большом графе её трудно найти. В большинстве случаев можно использовать псевдопериферийные вершины. Псевдопериферийную вершину можно легко найти, используя следующий алгоритм:

  1. Выберем вершину .
  2. Среди всех вершин, наиболее удалённых от , пусть имеет минимальную степень .
  3. Если , то возьмём и перейдём к шагу 2, в противном случае является псевдопериферийной вершиной.

См. также

Примечания

  1. F. Harary. . — МА: Addison-Wesley, 1969. — P. .

Литература

  • Деза М., Лоран M. Геометрия разрезов и метрик. — Москва: МЦНМО, 2001. — ISBN 5-900916-84-7 .
Источник —

Same as Метрика кратчайшего пути