Водо-водяной ядерный реактор
- 1 year ago
- 0
- 0
Приро́дный я́дерный реа́ктор в О́кло — несколько рудных тел в урановом месторождении Окло в Габоне , в которых около 1,8 млрд лет назад происходила самопроизвольная цепная реакция деления ядер урана. В настоящее время реакция прекратилась из-за истощения запасов изотопа 235 U подходящей концентрации.
Явление было обнаружено французским физиком англ. Paul Kazuo Kuroda ) в 1956 году и оказались близкими к реальности.
в 1972 году в результате изучения изотопного состава элементов в рудах месторождения Окло. Природные условия, при которых возможно протекание самоподдерживающейся реакции ядерного деления, предсказаны Полом Кадзуо Куродой (Рудные тела, в которых происходила цепная реакция, представляют собой залегающие в пористом песчанике линзовидные образования из уранинита (UO 2 ) диаметром порядка 10 м и толщиной от 20 до 90 см ; содержание урана в них составляло от 20 до 80 % (по массе). Определены 16 одиночных реакторов в трёх различных частях месторождения: в Окло, в Окелобондо (Okelobondo, 1,6 км от Окло) и в Бангомбе (Bangombe, 20 км к югу от Окло). Все 16 рудных тел объединяют под общим названием «Природный ядерный реактор Окло».
Окло — единственный известный на Земле естественный ядерный реактор. Цепная реакция началась здесь около 2 млрд лет назад и продолжалась в течение нескольких сотен тысяч лет. Средняя тепловая мощность реактора составляла около 100 кВт . И хотя природные цепные реакции в настоящее время невозможны из-за низкого изотопного содержания урана-235 в природном уране вследствие естественного радиоактивного распада, естественные ядерные реакторы могли существовать более миллиарда лет назад, когда содержание урана-235 было выше (например, два миллиарда лет назад концентрация урана-235 составляла 3,7 %, 3 млрд лет — 8,4 %, а 4 млрд лет — 19,2 %) .
В мае 1972 года на урановой обогатительной фабрике в гексафторида урана UF 6 из Окло было обнаружено отклонение от нормы изотопного состава урана. Содержание изотопа 235 U составило 0,717 % вместо обычных 0,720 %. Это расхождение требовало объяснения, так как все ядерные объекты подвергаются жёсткому контролю с целью недопущения незаконного использования расщепляющихся материалов в военных целях. Французский Комиссариат атомной энергетики (CEA) начал расследование. Серия измерений обнаружила значительные отклонения изотопного отношения 235 U/ 238 U в нескольких шахтах. В одной из шахт содержание 235 U составило 0,440 %. Были обнаружены также аномалии в распределении изотопов неодима и рутения .
(Франция) во время обычного масс-спектрометрического анализаУменьшение концентрации изотопа 235 U является характерной чертой отработанного ядерного топлива, так как именно этот изотоп является основным расщепляющимся материалом уранового ядерного реактора . 25 сентября 1972 года CEA объявила об открытии естественной самоподдерживающейся реакции ядерного деления. Следы протекания таких реакций были обнаружены в общей сложности в 16 точках.
Изотопные содержания некоторых элементов из середины таблицы Менделеева в рудах Окло демонстрируют существование здесь в прошлом очага деления урана-235 .
Неодим является одним из элементов, изотопный состав которого в Окло аномален по сравнению с другими территориями. Например, естественный неодим содержит 27 % изотопа 142 Nd, тогда как в Окло он составляет всего 6 %. В то же время руды Окло содержали больше изотопа 143 Nd. Если из измеренного в Окло изотопного содержания неодима вычесть фоновое (природное, существующее в интактных частях земной коры) содержание, полученный изотопный состав неодима характерен для продуктов деления 235 U.
Похожие аномалии изотопного состава в Окло наблюдаются и для рутения . Изотоп 99 Ru обнаруживается в бо́льших количествах, чем в естественных условиях (27—30 % вместо 12,7 %). Аномалию можно объяснить распадом 99 Tc → 99 Ru , так как технеций -99 является относительно короткоживущим ( T 1/2 = 212 тыс. лет ) продуктом деления 235 U. Изотоп 100 Ru обнаруживается в значительно меньших количествах, обусловленных лишь его природной распространённостью, так как он не возникает при делении урана-235. Его изобар 100 Mo , который является продуктом деления и распадается (посредством двойного бета-распада ) в 100 Ru, имеет слишком длинное время жизни ( ~10 19 лет ), чтобы внести какой-либо измеримый вклад в содержание рутения-100 в минералах Окло.
Реактор возник в результате затопления пористых богатых ураном пород грунтовыми водами, которые выступили в качестве замедлителей нейтронов. Тепло, выделявшееся в результате реакции, вызывало кипение и испарение воды, что замедляло или останавливало цепную реакцию. После того, как порода охлаждалась и распадались короткоживущие продукты распада (
), вода конденсировалась, и реакция возобновлялась. Этот циклический процесс продолжался несколько сотен тысяч лет.При делении урана среди продуктов деления образуются пять изотопов ксенона . Все пять изотопов в варьирующихся концентрациях были обнаружены в породах природного реактора. Изотопный состав выделенного из пород ксенона позволяет рассчитать, что типичный цикл работы реактора составлял примерно 3 часа: около 30 минут критичности и 2 часа 30 минут охлаждения .
Ключевой фактор, сделавший возможной работу реактора, — это примерно 3,7 % изотопное содержание 235 U в природном уране в те времена. Это изотопное содержание сравнимо с содержанием урана в низкообогащённом ядерном топливе, используемом в большинстве современных энергетических ядерных реакторов. (Оставшиеся 96 % составляет 238 U , не подходящий для реакторов на тепловых нейтронах). Поскольку уран-235 имеет период полураспада лишь 0,7 млрд лет (значительно короче, чем уран-238), современная распространённость урана-235 составляет лишь 0,72 %, чего недостаточно для работы реактора с легководным замедлителем без предварительного изотопного обогащения. Таким образом, в настоящее время образование природного ядерного реактора на Земле невозможно.
Урановое месторождение Окло — единственное известное место, где существовал природный ядерный реактор. Другие богатые урановые рудные тела тоже имели достаточное количество урана для самоподдерживающейся цепной реакции деления в то время, но комбинация физических условий в Окло (в частности, наличие воды как замедлителя нейтронов, и пр.) была уникальной.
Ещё одним фактором, который, вероятно, способствовал началу реакции в Окло именно 2 млрд лет назад, а не ранее, был рост содержания кислорода в атмосфере Земли . Уран хорошо растворяется в воде лишь в присутствии кислорода , поэтому в земной коре перенос и концентрация урана подземными водами, формирующими богатые рудные тела, стали возможными только после достижения достаточного содержания свободного кислорода.
По оценке, в реакциях деления, проходивших в урановых минеральных образованиях размером от сантиметров до метров, выгорело около 5 тонн урана-235 . Температуры в реакторе поднимались до нескольких сотен градусов Цельсия. Большинство нелетучих продуктов деления и актиноидов за прошедшие 2 млрд лет диффундировали лишь на сантиметры . Это позволяет исследовать перенос радиоактивных изотопов в земной коре, важный для прогноза их долгосрочного поведения в местах захоронения радиоактивных отходов .
Вскоре после открытия природного реактора в Окло исследования изотопных соотношений в его породах были использованы для проверки, изменялись ли фундаментальные физические константы в течение последних 2 млрд лет. В частности, резонансный захват теплового нейтрона ядром 149 Sm с образованием 150 Sm перестаёт быть возможным уже при небольшом изменении постоянной тонкой структуры α , определяющей силу электромагнитных взаимодействий , и аналогичных констант для сильного и слабого взаимодействия . Измерение относительного содержания 149 Sm/ 150 Sm в минералах Окло позволило установить, что в пределах экспериментальной погрешности значение этих констант было тем же, что и в наше время, поскольку скорость захвата тепловых нейтронов самарием-149 не изменилась за истекшие 2 млрд лет . На 2015 год проведены ещё более чувствительные измерения, и считается установленным , что во время работы реактора в Окло относительное отличие | Δα/α | постоянной тонкой структуры от современного значения не превосходило 1,1×10 −8 с доверительной вероятностью 95 %. В предположении линейного изменения α со временем это означает ограничение на скорость годичной вариации постоянной тонкой структуры :