История создания схемы Теллера — Улама
- 1 year ago
- 0
- 0
Число Улама — это член , придуманной и названной в свою честь Станиславом Уламом , в 1964 году.
Стандартная последовательность Улама (или (1, 2)-числа Улама) начинается с U 1 = 1 и U 2 = 2. При n > 2, U n определяется, как наименьшее целое число большее U n-1 , которое единственным образом разлагается в сумму двух различных более ранних членов последовательности.
Из определения вытекает, что 3 это число Улама (1+2); и 4 это число Улама (1+3). (Тут 2+2 не является вторым представлением 4, потому что предыдущие члены должны быть различными.) Число 5 не является числом Улама, потому что 5 = 1 + 4 = 2 + 3. Последовательность начинается, как:
Первые числа Улама, которые также являются простыми числами:
Существует бесконечно много чисел Улама, поскольку после добавления первых n членов всегда можно добавить еще один элемент: U n − 1 + U n , который будет однозначно определен, как сумма двух элементов меньше него и мы можем получить еще меньшие элементы используя подобный метод, поэтому следующий элемент можно определить, как наименьший среди этих однозначно определяемых вариантов.
Улам считал, что числа Улама имеют нулевую асимптотическую плотность , однако, по-видимому, она равна 0.07398.
Было замечено , что первые 10 миллионов чисел Улама удовлетворяют свойству: кроме 4 элементов (и это продолжается и далее, как известно, до ). Неравенства такого типа обычно верны для последовательностей, обладающих некоторой формой периодичности, но последовательность Улама, как известно, не является периодической, и явление не было объяснено. Его можно использовать для быстрого вычисления последовательности Улама (см. внешние ссылки).
Идею можно обобщить как (u, v)-числа Улама, выбрав разные начальные значения (u, v). Последовательность чисел (u, v)-чисел Улама является периодичной, если последовательность разностей между последовательными числами в последовательности периодическая. Когда v - нечетное число больше трех, последовательность (2, v)-чисел Улама является периодической. Когда v совпадает с 1 (по модулю 4) и не менее пяти, последовательность (4, v)-чисел Улама снова периодическая. Однако стандартные числа Улама не являются периодическими.
Последовательность чисел называется s-аддитивной, если каждое число в последовательности после начальных 2s-членов последовательности имеет ровно s-представлений в виде суммы двух предыдущих чисел. Таким образом, числа Улама и (u, v)-числа Улама являются 1-аддитивными последовательностями.
Если последовательность формируется путем добавления наибольшего числа с уникальным представлением в виде суммы двух более ранних чисел, вместо добавления наименьшего однозначно представимого числа, то результирующая последовательность представляет собой последовательность чисел Фибоначчи .