Лазерный диод
- 1 year ago
- 0
- 0
Электровакуумный диод — вакуумная двухэлектродная электронная лампа . Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия . При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток . Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы , способны детектировать частоты до 10 ГГц .
Развитие диодов началось в третьей четверти XIX века. В 1873 году британский учёный Ф. Гутри обнаружил, что отрицательно заряженный шар электроскопа при его сильном нагреве постепенно теряет электрический заряд , но если его зарядить положительно, то заряд не теряется. Объяснить это явления в то время не могли. Позже выяснилось, что это явление вызвано термоэлектронной эмиссией Явление термоэлектронной эмиссии была заново открыто 13 февраля 1880 года Томасом Эдисоном в его опытах по продлению срока службы накаливаемой нити в лампах накаливания . В 1883 году он его запатентовал ( патент США № 307031), но затемЭдисон его не изучал.
Впервые диод с термоэлектронной эмиссией был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года).
Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум . В баллоне размещены два электрода — катод и анод . Существуют два типа катодов — катоды прямого накала и катоды косвенного накала. Катод прямого накала представляет собой прямую или W-образную металлическую проволоку, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод расположен внутри цилиндрического или коробчатого анода, который в мощных диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).
При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии . По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объёму области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.
Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).
Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:
где — универсальная термоэлектронная постоянная Зоммерфельда.
ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.
К основным параметрам электровакуумного диода относятся:
Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.
Если температура катода постоянна, то в пределах участка «трёх вторых» крутизна равна первой производной от функции «трёх-вторых». [ уточнить ]
Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:
Если четвёртый элемент отсутствует, то это говорит о присутствии металлического корпуса!
По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует , и они выдерживают большее напряжение . Стойки к ионизирующим излучениям . Однако они обладают гораздо большими размерами и меньшим КПД .