Interested Article - Уравнение Гамильтона — Якоби

Классическая механика
См. также: Портал:Физика

В физике и математике уравнением Гамильтона Якоби называется уравнение вида

Здесь S обозначает классическое действие , — классический гамильтониан , — обобщённые координаты.

Непосредственно относится к классической (неквантовой) механике, однако хорошо приспособлено для установления связи между классической механикой и квантовой , так как его можно, например, получить практически прямо из уравнения Шрёдингера в приближении быстроосциллирующей волновой функции (больших частот и волновых чисел).

В классической механике возникает обычно из специального канонического преобразования классического гамильтониана , которое приводит к этому нелинейному дифференциальному уравнению первого порядка, решение которого описывает поведение динамической системы.

Следует отличать уравнение Гамильтона — Якоби от уравнений движения Гамильтона и Эйлера — Лагранжа . Хотя это уравнение и выводится из них, но представляет собой одно уравнение, описывающее динамику механической системы с любым количеством степеней свободы s , в отличие от 2 s уравнений Гамильтона и s уравнений Эйлера — Лагранжа.

Уравнение Гамильтона — Якоби помогает элегантно решить задачу Кеплера .

Каноническое преобразование

Уравнение Гамильтона — Якоби немедленно следует из того факта, что для любой производящей функции (пренебрегая индексами) уравнения движения принимают один и тот же вид для и при следующем преобразовании:

Новые уравнения движения становятся

Уравнение Гамильтона — Якоби появляется из специфической производящей функции , которая делает тождественной нулю. В этом случае все его производные зануляются, и

Таким образом, в штрихованной системе координат система совершенно стационарна в фазовом пространстве . Однако мы ещё не определили, при помощи какой производящей функции S достигается преобразование в штрихованную систему координат. Мы используем тот факт, что

Поскольку уравнение (1) даёт можно записать

что является уравнением Гамильтона — Якоби.

Решение

Уравнение Гамильтона — Якоби часто решают методом разделения переменных . Пусть некоторая координата (для определённости будем говорить о ) и соответствующий ей импульс входят в уравнение в форме

Тогда можно положить

где — произвольная постоянная, — обратная функция, и решать уравнение Гамильтона — Якоби уже с меньшим числом переменных. Если процесс можно продолжить по всем переменным, то решение уравнения примет вид

где — произвольные постоянные, — константа интегрирования. Напомним, что при этом является функцией конечной точки . Так как действие задаёт каноническое преобразование гамильтоновой системы, то его производные по координатам — это импульсы в новой системе координат, поэтому они должны сохраняться:

Совместно с уравнениями на импульсы это определяет движение системы.

Также если в голономной системе с степенями свободы кинетическая энергия имеет вид и потенциальная энергия имеет вид где то интегрирование уравнения Гамильтона—Якоби приводит к квадратурам (решение можно представить в виде комбинации элементарных функций и интегралов от них), см. Теорема Лиувилля об интеграле уравнения Гамильтона — Якоби .

См. также

Примечания

  1. , с. 167.

Литература

  • Гантмахер Ф. Р. . 2-е издание — М. : Наука, 1966.
  • Добронравов В. В. . — М.: Высшая школа, 1976.
  • Ландау Л. Д., Лифшиц Е. М. Механика. — Издание 5-е, стереотипное. — М. : Физматлит , 2004 . — 224 с. — («Теоретическая физика», том I). — ISBN 5-9221-0055-6 .
  • Ланцош К. . — М.: Физматгиз. 1965.
  • Лич Дж. У. . — М.: Иностр. литература, 1961.
  • Павленко Ю. Г. Лекции по теоретической механике. — М.: ФИЗМАТЛИТ, 2002. — 392 с.
  • Парс Л. А. . — М.: Наука, 1971.
  • Бутенин Н. В. Введение в аналитическую механику. — М. : Наука, 1971. — 264 с.
Источник —

Same as Уравнение Гамильтона — Якоби